A practical guide for generating unsupervised, spectrogram-based latent space representations of animal vocalizations
Lade...
Dateien
Datum
2022
Autor:innen
Jensen, Frants H.
Manser, Marta B.
Sainburg, Tim
Roch, Marie A.
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Animal Ecology. Wiley. 2022, 91(8), pp. 1567-1581. ISSN 0021-8790. eISSN 1365-2656. Available under: doi: 10.1111/1365-2656.13754
Zusammenfassung
- Background: The manual detection, analysis and classification of animal vocalizations in acoustic recordings is laborious and requires expert knowledge. Hence, there is a need for objective, generalizable methods that detect underlying patterns in these data, categorize sounds into distinct groups and quantify similarities between them. Among all computational methods that have been proposed to accomplish this, neighbourhood-based dimensionality reduction of spectrograms to produce a latent space representation of calls stands out for its conceptual simplicity and effectiveness.
2. Goal of the study/what was done: Using a dataset of manually annotated meerkat Suricata suricatta vocalizations, we demonstrate how this method can be used to obtain meaningful latent space representations that reflect the established taxonomy of call types. We analyse strengths and weaknesses of the proposed approach, give recommendations for its usage and show application examples, such as the classification of ambiguous calls and the detection of mislabelled calls.
3. What this means: All analyses are accompanied by example code to help researchers realize the potential of this method for the study of animal vocalizations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
THOMAS, Mara, Frants H. JENSEN, Baptiste AVERLY, Vlad DEMARTSEV, Marta B. MANSER, Tim SAINBURG, Marie A. ROCH, Ariana STRANDBURG-PESHKIN, 2022. A practical guide for generating unsupervised, spectrogram-based latent space representations of animal vocalizations. In: Journal of Animal Ecology. Wiley. 2022, 91(8), pp. 1567-1581. ISSN 0021-8790. eISSN 1365-2656. Available under: doi: 10.1111/1365-2656.13754BibTex
@article{Thomas2022-08pract-57910, year={2022}, doi={10.1111/1365-2656.13754}, title={A practical guide for generating unsupervised, spectrogram-based latent space representations of animal vocalizations}, number={8}, volume={91}, issn={0021-8790}, journal={Journal of Animal Ecology}, pages={1567--1581}, author={Thomas, Mara and Jensen, Frants H. and Averly, Baptiste and Demartsev, Vlad and Manser, Marta B. and Sainburg, Tim and Roch, Marie A. and Strandburg-Peshkin, Ariana} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57910"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57910"/> <dc:creator>Averly, Baptiste</dc:creator> <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights> <dc:language>eng</dc:language> <dc:contributor>Thomas, Mara</dc:contributor> <dc:contributor>Strandburg-Peshkin, Ariana</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/> <dc:contributor>Sainburg, Tim</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57910/1/Thomas_2-w1lzfbwes3iv8.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-01T09:18:15Z</dc:date> <dcterms:title>A practical guide for generating unsupervised, spectrogram-based latent space representations of animal vocalizations</dcterms:title> <dc:creator>Sainburg, Tim</dc:creator> <dc:contributor>Demartsev, Vlad</dc:contributor> <dc:creator>Roch, Marie A.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:contributor>Averly, Baptiste</dc:contributor> <dc:contributor>Roch, Marie A.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-01T09:18:15Z</dcterms:available> <dc:creator>Jensen, Frants H.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Manser, Marta B.</dc:contributor> <dcterms:abstract xml:lang="eng">1. Background: The manual detection, analysis and classification of animal vocalizations in acoustic recordings is laborious and requires expert knowledge. Hence, there is a need for objective, generalizable methods that detect underlying patterns in these data, categorize sounds into distinct groups and quantify similarities between them. Among all computational methods that have been proposed to accomplish this, neighbourhood-based dimensionality reduction of spectrograms to produce a latent space representation of calls stands out for its conceptual simplicity and effectiveness.<br /><br />2. Goal of the study/what was done: Using a dataset of manually annotated meerkat Suricata suricatta vocalizations, we demonstrate how this method can be used to obtain meaningful latent space representations that reflect the established taxonomy of call types. We analyse strengths and weaknesses of the proposed approach, give recommendations for its usage and show application examples, such as the classification of ambiguous calls and the detection of mislabelled calls.<br /><br />3. What this means: All analyses are accompanied by example code to help researchers realize the potential of this method for the study of animal vocalizations.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Strandburg-Peshkin, Ariana</dc:creator> <dc:creator>Manser, Marta B.</dc:creator> <dcterms:issued>2022-08</dcterms:issued> <dc:creator>Thomas, Mara</dc:creator> <dc:contributor>Jensen, Frants H.</dc:contributor> <dc:creator>Demartsev, Vlad</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57910/1/Thomas_2-w1lzfbwes3iv8.pdf"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja