Microscopic density-functional approach to nonlinear elasticity theory

Cite This

Files in this item

Checksum: MD5:75ca1ba80ab5fb4d6668e8a67888cd84

HAUSSMANN, Rudolf, 2022. Microscopic density-functional approach to nonlinear elasticity theory. In: Journal of Statistical Mechanics: Theory and Experiment. Institute of Physics Publishing (IOP). 5, 053210. eISSN 1742-5468. Available under: doi: 10.1088/1742-5468/ac6d61

@article{Haussmann2022Micro-57763, title={Microscopic density-functional approach to nonlinear elasticity theory}, year={2022}, doi={10.1088/1742-5468/ac6d61}, volume={5}, journal={Journal of Statistical Mechanics: Theory and Experiment}, author={Haussmann, Rudolf}, note={Article Number: 053210} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/57763"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-10T08:52:29Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57763/1/Haussmann_2-uppco4q63oyg6.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2022</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57763/1/Haussmann_2-uppco4q63oyg6.pdf"/> <dc:creator>Haussmann, Rudolf</dc:creator> <dcterms:title>Microscopic density-functional approach to nonlinear elasticity theory</dcterms:title> <dc:language>eng</dc:language> <dc:contributor>Haussmann, Rudolf</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-10T08:52:29Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dcterms:abstract xml:lang="eng">Starting from a general classical model of many interacting particles we present a well defined step by step procedure to derive the continuum-mechanics equations of nonlinear elasticity theory with fluctuations which describe the macroscopic phenomena of a solid crystal. As the relevant variables we specify the coarse-grained densities of the conserved quantities and a properly defined displacement field which describes the local translations, rotations, and deformations. In order to stay within the framework of the conventional density-functional theory we first and mainly consider the isothermal case and omit the effects of heat transport and warming by friction where later we extend our theory to the general case and include these effects. We proceed in two steps. First, we apply the concept of local thermodynamic equilibrium and minimize the free energy functional under the constraints that the macroscopic relevant variables are fixed. As results we obtain the local free energy density and we derive explicit formulas for the elastic constants which are exact within the framework of density-functional theory. Second, we apply the methods of nonequilibrium statistical mechanics with projection-operator techniques. We extend the projection operators in order to include the effects of coarse-graining and the displacement field. As a result we obtain the time-evolution equations for the relevant variables with three kinds of terms on the right-hand sides: reversible, dissipative, and fluctuating terms. We find explicit formulas for the transport coefficients which are exact in the limit of continuum mechanics if the projection operators are properly defined. By construction the theory allows the diffusion of particles in terms of point defects where, however, in a normal crystal this diffusion is suppressed.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57763"/> </rdf:Description> </rdf:RDF>

Downloads since Jun 10, 2022 (Information about access statistics)

Haussmann_2-uppco4q63oyg6.pdf 64

This item appears in the following Collection(s)

Search KOPS


Browse

My Account