Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)
Type of Publication: | Diploma thesis |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-2-segrisl6w08o7 |
Author: | Albicker, Julia |
Year of publication: | 2022 |
Summary: |
This thesis provides a detailed description of the Gauß-Newton method, which is a common and effective technique for solving least-squares problems. A proof of its linear and locally quadratic convergence is presented. Additionally, the Levenberg-Marquardt method is discussed as a variant of the Gauß-Newton approach. Furthermore, a new implementation of the mentioned optimization techniques and its embedding into the Python library oppy is introduced. Two distinct application cases are performed and evaluated, which adopt the formerly presented theoretical considerations and demonstrate the effectiveness of the applied methods.
|
Dissertation note: | Master thesis, Universität Konstanz |
Subject (DDC): | 510 Mathematics |
Link to License: | Attribution 4.0 International |
Bibliography of Konstanz: | Yes |
ALBICKER, Julia, 2022. The Gauß-Newton Method and its Implementation in the Optimization Library Oppy [Master thesis]. Konstanz: Universität Konstanz
@mastersthesis{Albicker2022GauNe-57727, title={The Gauß-Newton Method and its Implementation in the Optimization Library Oppy}, year={2022}, address={Konstanz}, school={Universität Konstanz}, author={Albicker, Julia} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/57727"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:title>The Gauß-Newton Method and its Implementation in the Optimization Library Oppy</dcterms:title> <dc:creator>Albicker, Julia</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:abstract xml:lang="eng">This thesis provides a detailed description of the Gauß-Newton method, which is a common and effective technique for solving least-squares problems. A proof of its linear and locally quadratic convergence is presented. Additionally, the Levenberg-Marquardt method is discussed as a variant of the Gauß-Newton approach. Furthermore, a new implementation of the mentioned optimization techniques and its embedding into the Python library oppy is introduced. Two distinct application cases are performed and evaluated, which adopt the formerly presented theoretical considerations and demonstrate the effectiveness of the applied methods.</dcterms:abstract> <dcterms:issued>2022</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-03T06:33:26Z</dc:date> <dc:rights>Attribution 4.0 International</dc:rights> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57727/3/Albicker_2-segrisl6w08o7.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-03T06:33:26Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57727"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57727/3/Albicker_2-segrisl6w08o7.pdf"/> <dc:contributor>Albicker, Julia</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Albicker_2-segrisl6w08o7.pdf | 536 |