KOPS - The Institutional Repository of the University of Konstanz

Bounds on complexity of matrix multiplication away from Coppersmith–Winograd tensors

Bounds on complexity of matrix multiplication away from Coppersmith–Winograd tensors

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

HOMS, Roser, Joachim JELISIEJEW, Mateusz MICHAŁEK, Tim SEYNNAEVE, 2022. Bounds on complexity of matrix multiplication away from Coppersmith–Winograd tensors. In: Journal of Pure and Applied Algebra. Elsevier Science. 2(2). ISSN 0022-4049. eISSN 1873-1376. Available under: doi: 10.1016/j.jpaa.2022.107142

@article{Homs2022-12Bound-57625, title={Bounds on complexity of matrix multiplication away from Coppersmith–Winograd tensors}, year={2022}, doi={10.1016/j.jpaa.2022.107142}, number={2}, volume={2}, issn={0022-4049}, journal={Journal of Pure and Applied Algebra}, author={Homs, Roser and Jelisiejew, Joachim and Michałek, Mateusz and Seynnaeve, Tim} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/57625"> <dc:contributor>Jelisiejew, Joachim</dc:contributor> <dc:creator>Jelisiejew, Joachim</dc:creator> <dc:creator>Homs, Roser</dc:creator> <dc:creator>Michałek, Mateusz</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Bounds on complexity of matrix multiplication away from Coppersmith–Winograd tensors</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57625"/> <dc:contributor>Homs, Roser</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Seynnaeve, Tim</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-23T12:18:47Z</dc:date> <dcterms:abstract xml:lang="eng">We present three families of minimal border rank tensors: they come from highest weight vectors, smoothable algebras, and monomial algebras. We analyse them using Strassen's laser method and obtain an upper bound 2.431 on ω. We also explain how in certain monomial cases using the laser method directly is less profitable than first degenerating. Our results form possible paths in the search for valuable tensors for the laser method away from Coppersmith-Winograd tensors.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:issued>2022-12</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-23T12:18:47Z</dcterms:available> <dc:contributor>Michałek, Mateusz</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Seynnaeve, Tim</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account