KOPS - Das Institutionelle Repositorium der Universität Konstanz

Similarity Clustering of Dimensions for an Enhanced Visualization of Multidimensional Data

Similarity Clustering of Dimensions for an Enhanced Visualization of Multidimensional Data

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:29b0595f37253064a364c06b5863765c

ANKERST, Mihael, Stefan BERCHTOLD, Daniel A. KEIM, 1998. Similarity Clustering of Dimensions for an Enhanced Visualization of Multidimensional Data. IEEE Symposium on Information Visualization. Research Triangle, CA, USA. In: Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258). IEEE Symposium on Information Visualization. Research Triangle, CA, USA. IEEE Comput. Soc, pp. 52-60,. ISBN 0-8186-9093-3

@inproceedings{Ankerst1998Simil-5761, title={Similarity Clustering of Dimensions for an Enhanced Visualization of Multidimensional Data}, year={1998}, doi={10.1109/INFVIS.1998.729559}, isbn={0-8186-9093-3}, publisher={IEEE Comput. Soc}, booktitle={Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258)}, pages={52--60,}, author={Ankerst, Mihael and Berchtold, Stefan and Keim, Daniel A.} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/5761"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:53Z</dcterms:available> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Ankerst, Mihael</dc:creator> <dc:creator>Berchtold, Stefan</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5761"/> <dc:contributor>Ankerst, Mihael</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Berchtold, Stefan</dc:contributor> <dc:rights>deposit-license</dc:rights> <dcterms:title>Similarity Clustering of Dimensions for an Enhanced Visualization of Multidimensional Data</dcterms:title> <dcterms:issued>1998</dcterms:issued> <dcterms:rights rdf:resource="https://creativecommons.org/licenses/by-nc-nd/2.0/legalcode"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:53Z</dc:date> <dcterms:bibliographicCitation>First publ. in: Proceedings of the International Conference on Information Visualization '98 (INFOVIS'98), Research Triangle Park, NC, September, 1998, pp. 52-60</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dc:format>application/pdf</dc:format> <dcterms:abstract xml:lang="eng">The order and arrangement of dimensions (variates) is crucial for the effectiveness of a large number of visualization techniques such as parallel coordinates, scatterplots, recursive pattern, and many others. In this paper, we describe a systematic approach to arrange the dimensions according to their similarity. The basic idea is to rearrange the data dimensions such that dimensions showing a similar behavior are positioned next to each other. For the similarity clustering of dimensions we need to define similarity measures which determine the partial or global similarity of dimensions. We then consider the problem of finding an optimal one- or two-dimensional arrangement of the dimensions based on their similarity. Theoretical considerations show that both, the one- and the two-dimensional arrangement problem are surprisingly hard problems, i.e. they are NPcomplete. Our solution of the problem is therefore based on heuristic algorithms. An empirical evaluation using a number of different visualization techniques shows the high impact of our similarity clustering of dimensions on the visualization results.</dcterms:abstract> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

InfoVis98.pdf 441

Das Dokument erscheint in:

deposit-license Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: deposit-license

KOPS Suche


Stöbern

Mein Benutzerkonto