Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können derzeit keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted currently.)
Type of Publication: | Contribution to a conference collection |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-70481 |
Author: | Ankerst, Mihael; Berchtold, Stefan; Keim, Daniel A. |
Year of publication: | 1998 |
Conference: | IEEE Symposium on Information Visualization, Research Triangle, CA, USA |
Published in: | Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258). - IEEE Comput. Soc, 1998. - pp. 52-60,. - ISBN 0-8186-9093-3 |
DOI (citable link): | https://dx.doi.org/10.1109/INFVIS.1998.729559 |
Summary: |
The order and arrangement of dimensions (variates) is crucial for the effectiveness of a large number of visualization techniques such as parallel coordinates, scatterplots, recursive pattern, and many others. In this paper, we describe a systematic approach to arrange the dimensions according to their similarity. The basic idea is to rearrange the data dimensions such that dimensions showing a similar behavior are positioned next to each other. For the similarity clustering of dimensions we need to define similarity measures which determine the partial or global similarity of dimensions. We then consider the problem of finding an optimal one- or two-dimensional arrangement of the dimensions based on their similarity. Theoretical considerations show that both, the one- and the two-dimensional arrangement problem are surprisingly hard problems, i.e. they are NPcomplete. Our solution of the problem is therefore based on heuristic algorithms. An empirical evaluation using a number of different visualization techniques shows the high impact of our similarity clustering of dimensions on the visualization results.
|
Subject (DDC): | 004 Computer Science |
Link to License: | Attribution-NonCommercial-NoDerivs 2.0 Generic |
ANKERST, Mihael, Stefan BERCHTOLD, Daniel A. KEIM, 1998. Similarity Clustering of Dimensions for an Enhanced Visualization of Multidimensional Data. IEEE Symposium on Information Visualization. Research Triangle, CA, USA. In: Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258). IEEE Comput. Soc, pp. 52-60,. ISBN 0-8186-9093-3. Available under: doi: 10.1109/INFVIS.1998.729559
@inproceedings{Ankerst1998Simil-5761, title={Similarity Clustering of Dimensions for an Enhanced Visualization of Multidimensional Data}, year={1998}, doi={10.1109/INFVIS.1998.729559}, isbn={0-8186-9093-3}, publisher={IEEE Comput. Soc}, booktitle={Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258)}, pages={52--60,}, author={Ankerst, Mihael and Berchtold, Stefan and Keim, Daniel A.} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/5761"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5761/1/InfoVis98.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:53Z</dcterms:available> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Ankerst, Mihael</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Berchtold, Stefan</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5761"/> <dc:contributor>Ankerst, Mihael</dc:contributor> <dc:contributor>Berchtold, Stefan</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5761/1/InfoVis98.pdf"/> <dcterms:title>Similarity Clustering of Dimensions for an Enhanced Visualization of Multidimensional Data</dcterms:title> <dcterms:issued>1998</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:bibliographicCitation>First publ. in: Proceedings of the International Conference on Information Visualization '98 (INFOVIS'98), Research Triangle Park, NC, September, 1998, pp. 52-60</dcterms:bibliographicCitation> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:53Z</dc:date> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">The order and arrangement of dimensions (variates) is crucial for the effectiveness of a large number of visualization techniques such as parallel coordinates, scatterplots, recursive pattern, and many others. In this paper, we describe a systematic approach to arrange the dimensions according to their similarity. The basic idea is to rearrange the data dimensions such that dimensions showing a similar behavior are positioned next to each other. For the similarity clustering of dimensions we need to define similarity measures which determine the partial or global similarity of dimensions. We then consider the problem of finding an optimal one- or two-dimensional arrangement of the dimensions based on their similarity. Theoretical considerations show that both, the one- and the two-dimensional arrangement problem are surprisingly hard problems, i.e. they are NPcomplete. Our solution of the problem is therefore based on heuristic algorithms. An empirical evaluation using a number of different visualization techniques shows the high impact of our similarity clustering of dimensions on the visualization results.</dcterms:abstract> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:format>application/pdf</dc:format> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>
InfoVis98.pdf | 1331 |