A Domain-adaptive Pre-training Approach for Language Bias Detection in News
A Domain-adaptive Pre-training Approach for Language Bias Detection in News
Date
2022
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published
Published in
JCDL '22 : Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries. - New York, NY : ACM, 2022. - 3. - ISBN 978-1-4503-9345-4
Abstract
Media bias is a multi-faceted construct influencing individual behavior and collective decision-making. Slanted news reporting is the result of one-sided and polarized writing which can occur in various forms. In this work, we focus on an important form of media bias, i.e. bias by word choice. Detecting biased word choices is a challenging task due to its linguistic complexity and the lack of representative gold-standard corpora. We present DA-RoBERTa, a new state-of-the-art transformer-based model adapted to the media bias domain which identifies sentence-level bias with an F1 score of 0.814. In addition, we also train, DA-BERT and DA-BART, two more transformer models adapted to the bias domain. Our proposed domain-adapted models outperform prior bias detection approaches on the same data.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Media bias, news slant, neural classification, text analysis, domain adaptive
Conference
ACM/IEEE Joint Conference on Digital Libraries (JCDL ’22), Jun 20, 2022 - Jun 24, 2022, Köln
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
KRIEGER, Jan-David, Timo SPINDE, Terry RUAS, Juhi KULSHRESTHA, Bela GIPP, 2022. A Domain-adaptive Pre-training Approach for Language Bias Detection in News. ACM/IEEE Joint Conference on Digital Libraries (JCDL ’22). Köln, Jun 20, 2022 - Jun 24, 2022. In: JCDL '22 : Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries. New York, NY:ACM, 3. ISBN 978-1-4503-9345-4. Available under: doi: 10.1145/3529372.3530932BibTex
@inproceedings{Krieger2022Domai-57523, year={2022}, doi={10.1145/3529372.3530932}, title={A Domain-adaptive Pre-training Approach for Language Bias Detection in News}, isbn={978-1-4503-9345-4}, publisher={ACM}, address={New York, NY}, booktitle={JCDL '22 : Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries}, author={Krieger, Jan-David and Spinde, Timo and Ruas, Terry and Kulshrestha, Juhi and Gipp, Bela}, note={Article Number: 3} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57523"> <dc:contributor>Gipp, Bela</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57523/1/Krieger_2-1fua1es2xhhxv0.pdf"/> <dcterms:issued>2022</dcterms:issued> <dc:creator>Ruas, Terry</dc:creator> <dc:language>eng</dc:language> <dcterms:title>A Domain-adaptive Pre-training Approach for Language Bias Detection in News</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Krieger, Jan-David</dc:contributor> <dc:creator>Spinde, Timo</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57523"/> <dc:creator>Krieger, Jan-David</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-12T11:55:32Z</dc:date> <dc:creator>Kulshrestha, Juhi</dc:creator> <dc:creator>Gipp, Bela</dc:creator> <dc:contributor>Spinde, Timo</dc:contributor> <dcterms:abstract xml:lang="eng">Media bias is a multi-faceted construct influencing individual behavior and collective decision-making. Slanted news reporting is the result of one-sided and polarized writing which can occur in various forms. In this work, we focus on an important form of media bias, i.e. bias by word choice. Detecting biased word choices is a challenging task due to its linguistic complexity and the lack of representative gold-standard corpora. We present DA-RoBERTa, a new state-of-the-art transformer-based model adapted to the media bias domain which identifies sentence-level bias with an F1 score of 0.814. In addition, we also train, DA-BERT and DA-BART, two more transformer models adapted to the bias domain. Our proposed domain-adapted models outperform prior bias detection approaches on the same data.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Kulshrestha, Juhi</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57523/1/Krieger_2-1fua1es2xhhxv0.pdf"/> <dc:contributor>Ruas, Terry</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-12T11:55:32Z</dcterms:available> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes