KOPS - The Institutional Repository of the University of Konstanz

A Domain-adaptive Pre-training Approach for Language Bias Detection in News

A Domain-adaptive Pre-training Approach for Language Bias Detection in News

Cite This

Files in this item

Checksum: MD5:e22d07201cc2f49d2696a0887e023a0a

KRIEGER, Jan-David, Timo SPINDE, Terry RUAS, Juhi KULSHRESTHA, Bela GIPP, 2022. A Domain-adaptive Pre-training Approach for Language Bias Detection in News. ACM/IEEE Joint Conference on Digital Libraries (JCDL ’22). Köln, Jun 20, 2022 - Jun 24, 2022. In: JCDL '22 : Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries. New York, NY:ACM, 3. ISBN 978-1-4503-9345-4. Available under: doi: 10.1145/3529372.3530932

@inproceedings{Krieger2022Domai-57523, title={A Domain-adaptive Pre-training Approach for Language Bias Detection in News}, year={2022}, doi={10.1145/3529372.3530932}, isbn={978-1-4503-9345-4}, address={New York, NY}, publisher={ACM}, booktitle={JCDL '22 : Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries}, author={Krieger, Jan-David and Spinde, Timo and Ruas, Terry and Kulshrestha, Juhi and Gipp, Bela}, note={Article Number: 3} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/57523"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57523"/> <dc:creator>Spinde, Timo</dc:creator> <dc:contributor>Ruas, Terry</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57523/1/Krieger_2-1fua1es2xhhxv0.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-12T11:55:32Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57523/1/Krieger_2-1fua1es2xhhxv0.pdf"/> <dc:contributor>Kulshrestha, Juhi</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-12T11:55:32Z</dc:date> <dc:contributor>Spinde, Timo</dc:contributor> <dcterms:abstract xml:lang="eng">Media bias is a multi-faceted construct influencing individual behavior and collective decision-making. Slanted news reporting is the result of one-sided and polarized writing which can occur in various forms. In this work, we focus on an important form of media bias, i.e. bias by word choice. Detecting biased word choices is a challenging task due to its linguistic complexity and the lack of representative gold-standard corpora. We present DA-RoBERTa, a new state-of-the-art transformer-based model adapted to the media bias domain which identifies sentence-level bias with an F1 score of 0.814. In addition, we also train, DA-BERT and DA-BART, two more transformer models adapted to the bias domain. Our proposed domain-adapted models outperform prior bias detection approaches on the same data.</dcterms:abstract> <dc:contributor>Gipp, Bela</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>A Domain-adaptive Pre-training Approach for Language Bias Detection in News</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Gipp, Bela</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:language>eng</dc:language> <dcterms:issued>2022</dcterms:issued> <dc:creator>Kulshrestha, Juhi</dc:creator> <dc:contributor>Krieger, Jan-David</dc:contributor> <dc:creator>Krieger, Jan-David</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Ruas, Terry</dc:creator> </rdf:Description> </rdf:RDF>

Downloads since May 12, 2022 (Information about access statistics)

Krieger_2-1fua1es2xhhxv0.pdf 24

This item appears in the following Collection(s)

Search KOPS


Browse

My Account