Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können am Montag, 6.2. und Dienstag, 7.2. keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted on Monday, Feb. 6 and Tuesday, Feb. 7.)
Type of Publication: | Contribution to a conference collection |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-92127 |
Author: | Merhof, Dorit; Markiewicz, Pawel J.; Declerck, Jérôme; Platsch, Günther; Matthews, Julian C.; Herholz, Karl |
Year of publication: | 2009 |
Conference: | 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009), Oct 24, 2009 - Nov 1, 2009, Orlando, FL |
Published in: | 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC). - IEEE, 2009. - pp. 3721-3725. - ISBN 978-1-4244-3961-4 |
DOI (citable link): | https://dx.doi.org/10.1109/NSSMIC.2009.5401871 |
Summary: |
With increasing life expectancy in developed countries, there is a corresponding increase in the frequency of diseases typically associated with old age, in particular dementia. In recent research, multivariate analysis of Positron Emission Tomography (PET) datasets has shown potential for classification between Alzheimer s disease (AD) patients and asymptomatic controls. In this work, the feasibility of multivariate analysis using Principal Component Analysis (PCA) and Fisher Discriminant Analysis (FDA) of Single Photon Emission Computed Tomography (SPECT) data is investigated. In order to obtain robust and reliable results, bootstrap resampling is applied and the robustness and classification accuracy of PCA/FDA are investigated. The robustness of the analysis is assessed by estimating the distribution of the angle between PCA/FDA discriminative vectors generated by bootstrap resampling, and the classification predictive accuracy is assessed using the .632 bootstrap estimator. The results indicate that PCA/FDA on SPECT data enables a robust differentiation between AD patients and asymptomatic controls based on three principal components, with a classification accuracy of 89%.
|
Subject (DDC): | 004 Computer Science |
Keywords: | Single photon emission computed tomography (SPECT), Alzheimer s disease (AD), Multivariate Analysis, Principal Component Analysis (PCA) |
Link to License: | In Copyright |
Bibliography of Konstanz: | Yes |
MERHOF, Dorit, Pawel J. MARKIEWICZ, Jérôme DECLERCK, Günther PLATSCH, Julian C. MATTHEWS, Karl HERHOLZ, 2009. Classification accuracy of multivariate analysis applied to 99mTc-ECD SPECT data in Alzheimer s disease patients and asymptomatic controls. 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009). Orlando, FL, Oct 24, 2009 - Nov 1, 2009. In: 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC). IEEE, pp. 3721-3725. ISBN 978-1-4244-3961-4. Available under: doi: 10.1109/NSSMIC.2009.5401871
@inproceedings{Merhof2009-10Class-5731, title={Classification accuracy of multivariate analysis applied to 99mTc-ECD SPECT data in Alzheimer s disease patients and asymptomatic controls}, year={2009}, doi={10.1109/NSSMIC.2009.5401871}, isbn={978-1-4244-3961-4}, publisher={IEEE}, booktitle={2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, pages={3721--3725}, author={Merhof, Dorit and Markiewicz, Pawel J. and Declerck, Jérôme and Platsch, Günther and Matthews, Julian C. and Herholz, Karl} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/5731"> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Matthews, Julian C.</dc:contributor> <dc:format>application/pdf</dc:format> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Matthews, Julian C.</dc:creator> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Merhof, Dorit</dc:contributor> <dc:contributor>Markiewicz, Pawel J.</dc:contributor> <dc:creator>Merhof, Dorit</dc:creator> <dc:contributor>Herholz, Karl</dc:contributor> <dc:creator>Herholz, Karl</dc:creator> <dcterms:title>Classification accuracy of multivariate analysis applied to 99mTc-ECD SPECT data in Alzheimer s disease patients and asymptomatic controls</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:bibliographicCitation>First publ. in: 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC) / Ed. Bo Yu. IEEE, 2010, pp. 3721-3725</dcterms:bibliographicCitation> <dc:creator>Declerck, Jérôme</dc:creator> <dcterms:abstract xml:lang="eng">With increasing life expectancy in developed countries, there is a corresponding increase in the frequency of diseases typically associated with old age, in particular dementia. In recent research, multivariate analysis of Positron Emission Tomography (PET) datasets has shown potential for classification between Alzheimer s disease (AD) patients and asymptomatic controls. In this work, the feasibility of multivariate analysis using Principal Component Analysis (PCA) and Fisher Discriminant Analysis (FDA) of Single Photon Emission Computed Tomography (SPECT) data is investigated. In order to obtain robust and reliable results, bootstrap resampling is applied and the robustness and classification accuracy of PCA/FDA are investigated. The robustness of the analysis is assessed by estimating the distribution of the angle between PCA/FDA discriminative vectors generated by bootstrap resampling, and the classification predictive accuracy is assessed using the .632 bootstrap estimator. The results indicate that PCA/FDA on SPECT data enables a robust differentiation between AD patients and asymptomatic controls based on three principal components, with a classification accuracy of 89%.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5731/1/merhof_classification_accuracy_2009.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:39Z</dc:date> <dc:contributor>Platsch, Günther</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Platsch, Günther</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5731/1/merhof_classification_accuracy_2009.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:39Z</dcterms:available> <dc:contributor>Declerck, Jérôme</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5731"/> <dc:creator>Markiewicz, Pawel J.</dc:creator> <dcterms:issued>2009-10</dcterms:issued> </rdf:Description> </rdf:RDF>
merhof_classification_accuracy_2009.pdf | 259 |