On the Surprising Behavior of Distance Metric in High-Dimensional Space
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In recent years, the effect of the curse of high dimensionality has been studied in great detail on several problems such as clustering, nearest neighbor search, and indexing. In high dimensional space the data becomes sparse, and traditional indexing and algorithmic techniques fail from a efficiency and/or effectiveness perspective. Recent research results show that in high dimensional space, the concept of proximity, distance or nearest neighbor may not even be qualitatively meaningful. In this paper, we view the dimensionality curse from the point of view of the distance metrics which are used to measure the similarity between objects. We specially examine the behavior of the commonly used Lk norm and show that the problem of meaningfulness in high dimensionality is sensitive to the value of k. For example, this means that the Manhattan distance metric (L1 norm) is consistently more preferable than the Euclidean distance metric (L2 norm) for high dimensional data mining applications. Using the intuition derived from our analysis, we introduce and examine a natural extension of the Lk norm to fractional distance metrics. We show that the fractional distance metric provides more meaningful results both from the theoretical and empirical perspective. The results show that fractional distance metrics can significantly improve the effectiveness of standard clustering algorithms such as the k-means algorithm.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
AGGARWAL, Charu C., Alexander HINNEBURG, Daniel A. KEIM, 2001. On the Surprising Behavior of Distance Metric in High-Dimensional Space. In: VAN DEN BUSSCHE, Jan, ed., Victor VIANU, ed.. Database Theory — ICDT 2001. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 420-434. Lecture Notes in Computer Science. 1973. ISBN 978-3-540-41456-8. Available under: doi: 10.1007/3-540-44503-X_27BibTex
@inproceedings{Aggarwal2001-10-12Surpr-5715, year={2001}, doi={10.1007/3-540-44503-X_27}, title={On the Surprising Behavior of Distance Metric in High-Dimensional Space}, number={1973}, isbn={978-3-540-41456-8}, publisher={Springer Berlin Heidelberg}, address={Berlin, Heidelberg}, series={Lecture Notes in Computer Science}, booktitle={Database Theory — ICDT 2001}, pages={420--434}, editor={Van den Bussche, Jan and Vianu, Victor}, author={Aggarwal, Charu C. and Hinneburg, Alexander and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5715"> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Hinneburg, Alexander</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5715/1/On_the_Surprising_Behavior_of_Distance_Metric_in_High_Dimensional_Space.pdf"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">In recent years, the effect of the curse of high dimensionality has been studied in great detail on several problems such as clustering, nearest neighbor search, and indexing. In high dimensional space the data becomes sparse, and traditional indexing and algorithmic techniques fail from a efficiency and/or effectiveness perspective. Recent research results show that in high dimensional space, the concept of proximity, distance or nearest neighbor may not even be qualitatively meaningful. In this paper, we view the dimensionality curse from the point of view of the distance metrics which are used to measure the similarity between objects. We specially examine the behavior of the commonly used Lk norm and show that the problem of meaningfulness in high dimensionality is sensitive to the value of k. For example, this means that the Manhattan distance metric (L1 norm) is consistently more preferable than the Euclidean distance metric (L2 norm) for high dimensional data mining applications. Using the intuition derived from our analysis, we introduce and examine a natural extension of the Lk norm to fractional distance metrics. We show that the fractional distance metric provides more meaningful results both from the theoretical and empirical perspective. The results show that fractional distance metrics can significantly improve the effectiveness of standard clustering algorithms such as the k-means algorithm.</dcterms:abstract> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Aggarwal, Charu C.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5715"/> <dcterms:bibliographicCitation>First publ. in: Database theory, ICDT 200, 8th International Conference, London, UK, January 4 - 6, 2001 / Jan Van den Bussche ... (eds.). Berlin: Springer, 2001, pp. 420-434 (=Lecture notes in computer science ; 1973)</dcterms:bibliographicCitation> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:format>application/pdf</dc:format> <dcterms:issued>2001-10-12</dcterms:issued> <dcterms:title>On the Surprising Behavior of Distance Metric in High-Dimensional Space</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:33Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5715/1/On_the_Surprising_Behavior_of_Distance_Metric_in_High_Dimensional_Space.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:33Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Hinneburg, Alexander</dc:creator> <dc:creator>Aggarwal, Charu C.</dc:creator> </rdf:Description> </rdf:RDF>