Fast Nearest Neighbor Search in High-Dimensional Spaces

Cite This

Files in this item

Checksum: MD5:cbe972747e78b6c36c7505f4f73f0dac

BERCHTOLD, Stefan, Bernhard ERTL, Daniel A. KEIM, Hans-Peter KRIEGEL, Thomas SEIDL, 1998. Fast Nearest Neighbor Search in High-Dimensional Spaces. In: IEEE COMPUTER SOCIETY TECHNICAL COMMITTEE ON DATA ENGINEERING, , ed.. Proceedings : 14th International Conference on Data Engineering, February 23-27, 1998, Orlando, Florida. Los Alamitos:IEEE, pp. 209-218. ISBN 0-8186-8289-2

@inproceedings{Berchtold1998Neare-5712, title={Fast Nearest Neighbor Search in High-Dimensional Spaces}, year={1998}, isbn={0-8186-8289-2}, address={Los Alamitos}, publisher={IEEE}, booktitle={Proceedings : 14th International Conference on Data Engineering, February 23-27, 1998, Orlando, Florida}, pages={209--218}, editor={IEEE Computer Society Technical Committee on Data Engineering}, author={Berchtold, Stefan and Ertl, Bernhard and Keim, Daniel A. and Kriegel, Hans-Peter and Seidl, Thomas} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:contributor>Keim, Daniel A.</dc:contributor> <dspace:hasBitstream rdf:resource=""/> <dcterms:abstract xml:lang="eng">Similarity search in multimedia databases requires an efficient support of nearest-neighbor search on a large set of high-dimensional points as a basic operation for query processing. As recent theoretical results show, state of the art approaches to nearest-neighbor search are not efficient in higher dimensions. In our new approach, we therefore precompute the result of any nearest-neighbor search which corresponds to a computation of the voronoi cell of each data point. In a second step, we store the voronoi cells in an index structure efficient for high-dimensional data spaces. As a result, nearest neighbor search corresponds to a simple point query on the index structure. Although our technique is based on a precomputation of the solution space, it is dynamic, i.e. it supports insertions of new data points. An extensive experimental evaluation of our technique demonstrates the high efficiency for uniformly distributed as well as real data. We obtained a significant reduction of the search time compared to nearest neighbor search in the X-tree (up to a factor of 4).</dcterms:abstract> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:issued>1998</dcterms:issued> <dc:format>application/pdf</dc:format> <dc:creator>Ertl, Bernhard</dc:creator> <dc:contributor>Kriegel, Hans-Peter</dc:contributor> <dspace:isPartOfCollection rdf:resource=""/> <dc:contributor>Seidl, Thomas</dc:contributor> <dcterms:available rdf:datatype="">2011-03-24T15:59:31Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Fast Nearest Neighbor Search in High-Dimensional Spaces</dcterms:title> <dcterms:isPartOf rdf:resource=""/> <dc:creator>Kriegel, Hans-Peter</dc:creator> <bibo:uri rdf:resource=""/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:date rdf:datatype="">2011-03-24T15:59:31Z</dc:date> <dcterms:bibliographicCitation>First publ. in: Proceedings / 14th International Conference on Data Engineering (ICDE'98), Orlando, FL, September, 1998, pp. 209-218</dcterms:bibliographicCitation> <dcterms:rights rdf:resource=""/> <dc:creator>Seidl, Thomas</dc:creator> <dcterms:hasPart rdf:resource=""/> <dc:creator>Berchtold, Stefan</dc:creator> <dc:contributor>Berchtold, Stefan</dc:contributor> <dc:contributor>Ertl, Bernhard</dc:contributor> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

ICDE98.pdf 895

This item appears in the following Collection(s)

Attribution-NonCommercial-NoDerivs 2.0 Generic Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 2.0 Generic

Search KOPS


My Account