KOPS - The Institutional Repository of the University of Konstanz

Metabolic effect of TAp63α : enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense

Metabolic effect of TAp63α : enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense

Cite This

Files in this item

Checksum: MD5:4db30edaadcc8fa08b899962c24d4345

D'ALESSANDRO, Angelo, Ivano AMELIO, Celia R. BERKERS, Alexey ANTONOV, Karen H. VOUSDEN, Gerry MELINO, Lello ZOLLA, 2014. Metabolic effect of TAp63α : enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense. In: Oncotarget. Impact Journals LLC. 5(17), pp. 7722-7733. eISSN 1949-2553. Available under: doi: 10.18632/oncotarget.2300

@article{DAlessandro2014Metab-57088, title={Metabolic effect of TAp63α : enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense}, year={2014}, doi={10.18632/oncotarget.2300}, number={17}, volume={5}, journal={Oncotarget}, pages={7722--7733}, author={D'Alessandro, Angelo and Amelio, Ivano and Berkers, Celia R. and Antonov, Alexey and Vousden, Karen H. and Melino, Gerry and Zolla, Lello} }

Melino, Gerry Zolla, Lello Amelio, Ivano 2022-03-30T09:48:29Z Zolla, Lello Berkers, Celia R. TAp63α is a member of the p53 family, which plays a central role in epithelial cancers. Recently, a role has emerged for p53 family members in cancer metabolic modulation. In order to assess whether TAp63α plays a role in cancer metabolism, we exploited p53-null osteosarcoma Tet-On Saos-2 cells, in which the expression of TAp63α was dependent on doxycycline supplementation to the medium. Metabolomics labeling experiments were performed by incubating the cells in <sup>13</sup>C-glucose or <sup>13</sup>C<sup>15</sup>N-glutamine-labeled culture media, as to monitor metabolic fluxes upon induced expression of TAp63α. Induced expression of TAp63α resulted in cell cycle arrest at the G1 phase. From a metabolic standpoint, expression of Tap63α promoted glycolysis and the pentose phosphate pathway, which was uncoupled from nucleotide biosynthesis, albeit prevented oxidative stress in the form of oxidized glutathione. Double 13C-glucose and 13C15N-glutamine metabolic labeling confirmed that induced expression of TAp63α corresponded to a decreased flux of pyruvate to the Krebs cycle and decreased utilization of glutamine for catabolic purposes in the TCA cycle. Results were not conclusive in relation to anabolic utilization of labeled glutamine, since it is unclear to what extent the observed minor TAp63α-dependent increases of glutamine-derived labeling in palmitate could be tied to increased rates of reductive carboxylation and de novo synthesis of fatty acids. Finally, bioinformatics elaborations highlighted a link between patient survival rates and the co-expression of p63 and rate limiting enzymes of the pentose phosphate pathway, G6PD and PGD. Vousden, Karen H. D'Alessandro, Angelo Metabolic effect of TAp63α : enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense Antonov, Alexey 2022-03-30T09:48:29Z Berkers, Celia R. Amelio, Ivano D'Alessandro, Angelo eng Antonov, Alexey terms-of-use Vousden, Karen H. 2014 Melino, Gerry

Downloads since Mar 30, 2022 (Information about access statistics)

D'Alessandro_2-tybb5ihnq0qf4.pdf 22

This item appears in the following Collection(s)

Search KOPS


Browse

My Account