Efficient Geometry-based Similarity Search of 3D Spatial Databases

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:d1a260a4c541a6c3d03d6ead0a1fb0c1

KEIM, Daniel A., 1999. Efficient Geometry-based Similarity Search of 3D Spatial Databases. In: SIGMOD Record. 28(2), pp. 419-430

@article{Keim1999Effic-5707, title={Efficient Geometry-based Similarity Search of 3D Spatial Databases}, year={1999}, doi={10.1145/304181.304219}, number={2}, volume={28}, journal={SIGMOD Record}, pages={419--430}, author={Keim, Daniel A.} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/5707"> <dcterms:issued>1999</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5707"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:30Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://creativecommons.org/licenses/by-nc-nd/2.0/legalcode"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:30Z</dc:date> <dc:format>application/pdf</dc:format> <dcterms:title>Efficient Geometry-based Similarity Search of 3D Spatial Databases</dcterms:title> <dcterms:bibliographicCitation>First publ. in: SIGMOD Record 28 (1999), 2, pp. 419-430</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">Searching a database of 3D-volume objects for objects which are similar to a given 3D search object is an important problem which arises in number of database applications - for example, in Medicine and CAD. In this paper, we present a new geometry-based solution to the problem of searching for similar 3D-volume objects. The problem is motivated from a real application in the medical domain where volume similarity is used as a basis for surgery decisions. Our solution for an efficient similarity search on large databases of 3D volume objects is based on a new geometric index structure. The basic idea of our new approach is to use the concept of hierarchical approximations of the 3D objects to speed up the search process. We formally show the correctness of our new approach and introduce two instantiations of our general idea, which are based on cuboid and octree approximations. We finally provide a performance evaluation of our new index structure revealing significant performance improvements over existing approaches.</dcterms:abstract> <dc:creator>Keim, Daniel A.</dc:creator> <dc:rights>deposit-license</dc:rights> <dc:contributor>Keim, Daniel A.</dc:contributor> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

Efficient_Geometry_based_Similarity_Search_of_3D_Spatial_Databases.pdf 202

Das Dokument erscheint in:

deposit-license Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: deposit-license

KOPS Suche


Stöbern

Mein Benutzerkonto