Bounds and Algorithms for Geodetic Hulls

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

STORANDT, Sabine, 2022. Bounds and Algorithms for Geodetic Hulls. Algorithms and Discrete Applied Mathematics. Puducherry, Feb 10, 2022 - Feb 12, 2022. In: BALACHANDRAN, Niranjan, ed., R. INKULU, ed.. Algorithms and Discrete Applied Mathematics : 8th International Conference, CALDAM 2022, Puducherry, India, February 10–12, 2022, Proceedings. Cham:Springer, pp. 181-194. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-95017-0. Available under: doi: 10.1007/978-3-030-95018-7_15

@inproceedings{Storandt2022Bound-57069, title={Bounds and Algorithms for Geodetic Hulls}, year={2022}, doi={10.1007/978-3-030-95018-7_15}, number={13179}, isbn={978-3-030-95017-0}, issn={0302-9743}, address={Cham}, publisher={Springer}, series={Lecture Notes in Computer Science}, booktitle={Algorithms and Discrete Applied Mathematics : 8th International Conference, CALDAM 2022, Puducherry, India, February 10–12, 2022, Proceedings}, pages={181--194}, editor={Balachandran, Niranjan and Inkulu, R.}, author={Storandt, Sabine} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:contributor>Storandt, Sabine</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">The paper is devoted to the study of geodetic convex hulls in graphs from a theoretical and practical perspective. The notion of convexity can be transferred from continuous geometry to discrete graph structures by defining a node subset to be (geodetically) convex if all shortest paths between its members do not leave the subset. The geodetic convex hull of a node set W is the smallest convex superset of W. The hull number of a graph is then defined as the size of the smallest node subset S (called hull set) whose convex hull contains all graph nodes. In contrast to the geometric setting, where the point subset on the boundary of the convex hull can be computed in polynomial time, it is NP-hard to decide whether a graph has a hull set of size at most s∈N. We establish novel theoretical bounds for graph parameters related to convex graph structures, and also design practical algorithms for upper and lower bounding the hull number. We evaluate the quality of our bounds as well as the performance of the proposed algorithms on road networks and wireless sensor networks of varying size.</dcterms:abstract> <dcterms:title>Bounds and Algorithms for Geodetic Hulls</dcterms:title> <dc:language>eng</dc:language> <dcterms:issued>2022</dcterms:issued> <dcterms:available rdf:datatype="">2022-03-30T08:32:49Z</dcterms:available> <dcterms:rights rdf:resource=""/> <dc:creator>Storandt, Sabine</dc:creator> <bibo:uri rdf:resource=""/> <dc:date rdf:datatype="">2022-03-30T08:32:49Z</dc:date> <dcterms:isPartOf rdf:resource=""/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account