ReLive : Bridging In-Situ and Ex-Situ Visual Analytics for Analyzing Mixed Reality User Studies
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The nascent field of mixed reality is seeing an ever-increasing need for user studies and field evaluation, which are particularly challenging given device heterogeneity, diversity of use, and mobile deployment. Immersive analytics tools have recently emerged to support such analysis in situ, yet the complexity of the data also warrants an ex-situ analysis using more traditional non-immersive visual analytics setups. To bridge the gap between both approaches, we introduce ReLive: a mixed-immersion visual analytics framework for exploring and analyzing mixed reality user studies. ReLive combines an in-situ virtual reality view with a complementary ex-situ desktop view. While the virtual reality view allows users to relive interactive spatial recordings replicating the original study, the synchronized desktop view provides a familiar interface for analyzing aggregated data. We validated our concepts in a two-step evaluation consisting of a design walkthrough and an empirical expert user study.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HUBENSCHMID, Sebastian, Jonathan WIELAND, Daniel I. FINK, Andrea BATCH, Johannes ZAGERMANN, Niklas ELMQVIST, Harald REITERER, 2022. ReLive : Bridging In-Situ and Ex-Situ Visual Analytics for Analyzing Mixed Reality User Studies. CHI Conference on Human Factors in Computing Systems (CHI '22). New Orleans, LA, USA, 29. Apr. 2022 - 5. Mai 2022. In: CHI '22 : Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. New York, NY: ACM, 2022, 24. ISBN 978-1-4503-9157-3. Available under: doi: 10.1145/3491102.3517550BibTex
@inproceedings{Hubenschmid2022ReLiv-56817.2, year={2022}, doi={10.1145/3491102.3517550}, title={ReLive : Bridging In-Situ and Ex-Situ Visual Analytics for Analyzing Mixed Reality User Studies}, isbn={978-1-4503-9157-3}, publisher={ACM}, address={New York, NY}, booktitle={CHI '22 : Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems}, author={Hubenschmid, Sebastian and Wieland, Jonathan and Fink, Daniel I. and Batch, Andrea and Zagermann, Johannes and Elmqvist, Niklas and Reiterer, Harald}, note={Article Number: 24} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56817.2"> <dc:contributor>Fink, Daniel I.</dc:contributor> <dc:creator>Hubenschmid, Sebastian</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-28T07:33:30Z</dcterms:available> <dc:creator>Batch, Andrea</dc:creator> <dcterms:title>ReLive : Bridging In-Situ and Ex-Situ Visual Analytics for Analyzing Mixed Reality User Studies</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56817.2/3/Hubenschmid_2-1lzz2k3qzxhpy1.pdf"/> <dc:creator>Wieland, Jonathan</dc:creator> <dc:contributor>Hubenschmid, Sebastian</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Elmqvist, Niklas</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Fink, Daniel I.</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Reiterer, Harald</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56817.2"/> <dc:creator>Zagermann, Johannes</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Wieland, Jonathan</dc:contributor> <dcterms:issued>2022</dcterms:issued> <dc:language>eng</dc:language> <dc:contributor>Reiterer, Harald</dc:contributor> <dc:contributor>Batch, Andrea</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-28T07:33:30Z</dc:date> <dcterms:abstract xml:lang="eng">The nascent field of mixed reality is seeing an ever-increasing need for user studies and field evaluation, which are particularly challenging given device heterogeneity, diversity of use, and mobile deployment. Immersive analytics tools have recently emerged to support such analysis in situ, yet the complexity of the data also warrants an ex-situ analysis using more traditional non-immersive visual analytics setups. To bridge the gap between both approaches, we introduce ReLive: a mixed-immersion visual analytics framework for exploring and analyzing mixed reality user studies. ReLive combines an in-situ virtual reality view with a complementary ex-situ desktop view. While the virtual reality view allows users to relive interactive spatial recordings replicating the original study, the synchronized desktop view provides a familiar interface for analyzing aggregated data. We validated our concepts in a two-step evaluation consisting of a design walkthrough and an empirical expert user study.</dcterms:abstract> <dc:contributor>Zagermann, Johannes</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56817.2/3/Hubenschmid_2-1lzz2k3qzxhpy1.pdf"/> <dc:creator>Elmqvist, Niklas</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>