ReLive : Bridging In-Situ and Ex-Situ Visual Analytics for Analyzing Mixed Reality User Studies

Thumbnail Image
Date
2022
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
SFB TRR 161 TP C 01 Quantitative Messung von Interaktion
SMARTACT Teilprojekt 6: Smartmobility / SMARTACT 2 Teilprojekt 6
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
CHI '22 : Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. - New York, NY : ACM, 2022. - 24. - ISBN 978-1-4503-9157-3
Abstract
The nascent field of mixed reality is seeing an ever-increasing need for user studies and field evaluation, which are particularly challenging given device heterogeneity, diversity of use, and mobile deployment. Immersive analytics tools have recently emerged to support such analysis in situ, yet the complexity of the data also warrants an ex-situ analysis using more traditional non-immersive visual analytics setups. To bridge the gap between both approaches, we introduce ReLive: a mixed-immersion visual analytics framework for exploring and analyzing mixed reality user studies. ReLive combines an in-situ virtual reality view with a complementary ex-situ desktop view. While the virtual reality view allows users to relive interactive spatial recordings replicating the original study, the synchronized desktop view provides a familiar interface for analyzing aggregated data. We validated our concepts in a two-step evaluation consisting of a design walkthrough and an empirical expert user study.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
CHI Conference on Human Factors in Computing Systems (CHI '22), Apr 29, 2022 - May 5, 2022, New Orleans, LA, USA
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690HUBENSCHMID, Sebastian, Jonathan WIELAND, Daniel FINK, Andrea BATCH, Johannes ZAGERMANN, Niklas ELMQVIST, Harald REITERER, 2022. ReLive : Bridging In-Situ and Ex-Situ Visual Analytics for Analyzing Mixed Reality User Studies. CHI Conference on Human Factors in Computing Systems (CHI '22). New Orleans, LA, USA, Apr 29, 2022 - May 5, 2022. In: CHI '22 : Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. New York, NY:ACM, 24. ISBN 978-1-4503-9157-3. Available under: doi: 10.1145/3491102.3517550
BibTex
@inproceedings{Hubenschmid2022ReLiv-56817.2,
  year={2022},
  doi={10.1145/3491102.3517550},
  title={ReLive : Bridging In-Situ and Ex-Situ Visual Analytics for Analyzing Mixed Reality User Studies},
  isbn={978-1-4503-9157-3},
  publisher={ACM},
  address={New York, NY},
  booktitle={CHI '22 : Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems},
  author={Hubenschmid, Sebastian and Wieland, Jonathan and Fink, Daniel and Batch, Andrea and Zagermann, Johannes and Elmqvist, Niklas and Reiterer, Harald},
  note={Article Number: 24}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56817.2">
    <dc:creator>Hubenschmid, Sebastian</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-28T07:33:30Z</dcterms:available>
    <dc:creator>Batch, Andrea</dc:creator>
    <dcterms:title>ReLive : Bridging In-Situ and Ex-Situ Visual Analytics for Analyzing Mixed Reality User Studies</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56817.2/3/Hubenschmid_2-1lzz2k3qzxhpy1.pdf"/>
    <dc:creator>Wieland, Jonathan</dc:creator>
    <dc:contributor>Hubenschmid, Sebastian</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Elmqvist, Niklas</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Fink, Daniel</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Reiterer, Harald</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56817.2"/>
    <dc:creator>Zagermann, Johannes</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Wieland, Jonathan</dc:contributor>
    <dcterms:issued>2022</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:contributor>Reiterer, Harald</dc:contributor>
    <dc:contributor>Batch, Andrea</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-28T07:33:30Z</dc:date>
    <dcterms:abstract xml:lang="eng">The nascent field of mixed reality is seeing an ever-increasing need for user studies and field evaluation, which are particularly challenging given device heterogeneity, diversity of use, and mobile deployment. Immersive analytics tools have recently emerged to support such analysis in situ, yet the complexity of the data also warrants an ex-situ analysis using more traditional non-immersive visual analytics setups. To bridge the gap between both approaches, we introduce ReLive: a mixed-immersion visual analytics framework for exploring and analyzing mixed reality user studies. ReLive combines an in-situ virtual reality view with a complementary ex-situ desktop view. While the virtual reality view allows users to relive interactive spatial recordings replicating the original study, the synchronized desktop view provides a familiar interface for analyzing aggregated data. We validated our concepts in a two-step evaluation consisting of a design walkthrough and an empirical expert user study.</dcterms:abstract>
    <dc:contributor>Zagermann, Johannes</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56817.2/3/Hubenschmid_2-1lzz2k3qzxhpy1.pdf"/>
    <dc:creator>Fink, Daniel</dc:creator>
    <dc:creator>Elmqvist, Niklas</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Link to research data
Description of supplementary data
Open source

Version History

Now showing 1 - 2 of 2
VersionDateSummary
2*
2022-03-25 15:35:24
Final cameraready PDF document
2022-03-10 12:15:56
* Selected version