On the maximal Lp-regularity of parabolic mixed order systems

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:6edcf1db259cb9988a843c728ad3f4e7

DENK, Robert, Jörg SEILER, 2010. On the maximal Lp-regularity of parabolic mixed order systems

@techreport{Denk2010maxim-568, series={Konstanzer Schriften in Mathematik}, title={On the maximal Lp-regularity of parabolic mixed order systems}, year={2010}, number={266}, author={Denk, Robert and Seiler, Jörg} }

Seiler, Jörg Denk, Robert deposit-license 2011-03-22T17:45:05Z application/pdf 2010 We study maximal L<sub>p</sub>-regularity for a class of pseudodifferential mixed order systems on a space-time cylinder &#8477;<sup>n</sup> x &#8477; or X x &#8477; where X is a closed smooth manifold. To this end we construct a calculus of Volterra pseudodifferential operators and characterize the parabolicity of a system by the invertibility of certain associated symbols. A parabolic system is shown to induce isomorphisms between suitable L<sub>p</sub>-Sobolev spaces of Bessel potential or Besov type. If the cross section of the space-time cylinder is compact, the inverse of a parabolic system belongs to the calculus again. As applications we discuss time-dependent Douglis-Nirenberg systems and a linear system arising in the study of the Stefan problem with Gibbs-Thomson correction. Seiler, Jörg Denk, Robert 2011-03-22T17:45:05Z eng On the maximal Lp-regularity of parabolic mixed order systems

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

266_Denk_Seiler.pdf 331

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto