Computational Structuralism

Cite This

Files in this item

Checksum: MD5:5c0e3a4fcb991bcf796065bbacc79c6e

HALBACH, Volker, Leon HORSTEN, 2005. Computational Structuralism. In: Philosophia Mathematica. Oxford University Press (OUP). 13(2), pp. 174-186. ISSN 0031-8019. eISSN 1744-6406. Available under: doi: 10.1093/philmat/nki021

@article{Halbach2005Compu-56727, title={Computational Structuralism}, year={2005}, doi={10.1093/philmat/nki021}, number={2}, volume={13}, issn={0031-8019}, journal={Philosophia Mathematica}, pages={174--186}, author={Halbach, Volker and Horsten, Leon} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/56727"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56727/3/Halbach_2-1tea2qdbfb6c44.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/40"/> <dc:creator>Horsten, Leon</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56727"/> <dc:contributor>Halbach, Volker</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-02T15:54:09Z</dc:date> <dcterms:abstract xml:lang="eng">According to structuralism in philosophy of mathematics, arithmetic is about a single structure. First-order theories are satisfied by (nonstandard) models that do not instantiate this structure. Proponents of structuralism have put forward various accounts of how we succeed in fixing one single structure as the intended interpretation of our arithmetical language. We shall look at a proposal that involves Tennenbaum's theorem, which says that any model with addition and multiplication as recursive operations is isomorphic to the standard model of arithmetic. On this account, the intended models of arithmetic are the notation systems with recursive operations on them satisfying the Peano axioms.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2005</dcterms:issued> <dc:contributor>Horsten, Leon</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-02T15:54:09Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Halbach, Volker</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56727/3/Halbach_2-1tea2qdbfb6c44.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/40"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Computational Structuralism</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>

Downloads since Mar 2, 2022 (Information about access statistics)

Halbach_2-1tea2qdbfb6c44.pdf 34

This item appears in the following Collection(s)

Search KOPS


Browse

My Account