Perspectives in machine learning for wildlife conservation

Cite This

Files in this item

Checksum: MD5:bdfad955f6bc6325bb36796041647259

TUIA, Devis, Benjamin KELLENBERGER, Sara BEERY, Blair R. COSTELLOE, Silvia ZUFFI, Benjamin RISSE, Alexander MATHIS, Martin WIKELSKI, Iain D. COUZIN, Margaret CROFOOT, 2022. Perspectives in machine learning for wildlife conservation. In: Nature Communications. Nature Publishing Group. 13, 792. eISSN 2041-1723. Available under: doi: 10.1038/s41467-022-27980-y

@article{Tuia2022Persp-56536, title={Perspectives in machine learning for wildlife conservation}, year={2022}, doi={10.1038/s41467-022-27980-y}, volume={13}, journal={Nature Communications}, author={Tuia, Devis and Kellenberger, Benjamin and Beery, Sara and Costelloe, Blair R. and Zuffi, Silvia and Risse, Benjamin and Mathis, Alexander and Wikelski, Martin and Couzin, Iain D. and Crofoot, Margaret}, note={Article Number: 792} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/56536"> <dc:contributor>Mathis, Alexander</dc:contributor> <dc:contributor>Wikelski, Martin</dc:contributor> <dc:creator>Zuffi, Silvia</dc:creator> <dcterms:abstract xml:lang="eng">Inexpensive and accessible sensors are accelerating data acquisition in animal ecology. These technologies hold great potential for large-scale ecological understanding, but are limited by current processing approaches which inefficiently distill data into relevant information. We argue that animal ecologists can capitalize on large datasets generated by modern sensors by combining machine learning approaches with domain knowledge. Incorporating machine learning into ecological workflows could improve inputs for ecological models and lead to integrated hybrid modeling tools. This approach will require close interdisciplinary collaboration to ensure the quality of novel approaches and train a new generation of data scientists in ecology and conservation.</dcterms:abstract> <dc:creator>Crofoot, Margaret</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Beery, Sara</dc:contributor> <dc:creator>Kellenberger, Benjamin</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Couzin, Iain D.</dc:contributor> <dc:contributor>Tuia, Devis</dc:contributor> <dc:creator>Risse, Benjamin</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/43615"/> <dc:creator>Costelloe, Blair R.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56536/1/Tuia_56536.pdf"/> <dc:creator>Tuia, Devis</dc:creator> <dc:creator>Wikelski, Martin</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/43615"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <dc:contributor>Crofoot, Margaret</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56536"/> <dc:contributor>Risse, Benjamin</dc:contributor> <dc:contributor>Kellenberger, Benjamin</dc:contributor> <dc:contributor>Costelloe, Blair R.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-14T10:28:42Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2022</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <dc:creator>Mathis, Alexander</dc:creator> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-14T10:28:42Z</dcterms:available> <dc:creator>Beery, Sara</dc:creator> <dc:creator>Couzin, Iain D.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56536/1/Tuia_56536.pdf"/> <dc:contributor>Zuffi, Silvia</dc:contributor> <dcterms:title>Perspectives in machine learning for wildlife conservation</dcterms:title> </rdf:Description> </rdf:RDF>

Downloads since Feb 14, 2022 (Information about access statistics)

Tuia_56536.pdf 86

This item appears in the following Collection(s)

Search KOPS


Browse

My Account