On the Shape-Selected, Ligand-Free Preparation of Hybrid Perovskite (CH3NH3PbBr3) Microcrystals and Their Suitability as Model-System for Single-Crystal Studies of Optoelectronic Properties
On the Shape-Selected, Ligand-Free Preparation of Hybrid Perovskite (CH3NH3PbBr3) Microcrystals and Their Suitability as Model-System for Single-Crystal Studies of Optoelectronic Properties
Date
2021
Authors
Kuper, Henning
Yalҫinkaya, Yenal
Becker, Jörg August
Weber, Stefan A. L.
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Nanomaterials ; 11 (2021), 11. - 3057. - MDPI. - eISSN 2079-4991
Abstract
Hybrid perovskite materials are one of the most promising candidates for optoelectronic applications, e.g., solar cells and LEDs, which can be produced at low cost compared to established materials. Although this field of research has seen a huge upsurge in the past decade, there is a major lack in understanding the underlying processes, such as shape-property relationships and the role of defects. Our aerosol-assisted synthesis pathway offers the possibility to obtain methylammonium lead bromide (MAPbBr3) microcrystals from a liquid single source precursor. The differently shaped particles are aligned on several substrates, without using a directing agent or other additives. The obtained particles show good stability under dry conditions. This allows us to characterize these materials and their pure surfaces at the single-crystal level using time- and spatially resolved methods, without any influences of size-dependent effects. By optimizing the precursor for the aerosol process, we were able to eliminate any purification steps and use the materials as processed. In addition, we performed theoretical simulations to deepen the understanding of the underlying processes in the formation of the different crystal facets and their specific properties. The model system presented provides insights into the shape-related properties of MAPbBr3 single crystals and their directed but ligand-free synthesis.
Summary in another language
Subject (DDC)
530 Physics
Keywords
hybrid perovskites (HYPE); methylammonium lead bromide; aerosol synthesis; shape-related properties; optoelectronic properties of MAPbBr3
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
BAHNMÜLLER, Ulrich, Henning KUPER, Tobias SEEWALD, Yenal YALҪINKAYA, Jörg August BECKER, Lukas SCHMIDT-MENDE, Stefan A. L. WEBER, Sebastian POLARZ, 2021. On the Shape-Selected, Ligand-Free Preparation of Hybrid Perovskite (CH3NH3PbBr3) Microcrystals and Their Suitability as Model-System for Single-Crystal Studies of Optoelectronic Properties. In: Nanomaterials. MDPI. 11(11), 3057. eISSN 2079-4991. Available under: doi: 10.3390/nano11113057BibTex
@article{Bahnmuller2021-11-13Shape-56531, year={2021}, doi={10.3390/nano11113057}, title={On the Shape-Selected, Ligand-Free Preparation of Hybrid Perovskite (CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub>) Microcrystals and Their Suitability as Model-System for Single-Crystal Studies of Optoelectronic Properties}, number={11}, volume={11}, journal={Nanomaterials}, author={Bahnmüller, Ulrich and Kuper, Henning and Seewald, Tobias and Yalҫinkaya, Yenal and Becker, Jörg August and Schmidt-Mende, Lukas and Weber, Stefan A. L. and Polarz, Sebastian}, note={Article Number: 3057} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56531"> <dc:creator>Kuper, Henning</dc:creator> <dc:creator>Schmidt-Mende, Lukas</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Becker, Jörg August</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56531"/> <dc:creator>Bahnmüller, Ulrich</dc:creator> <dc:contributor>Schmidt-Mende, Lukas</dc:contributor> <dc:creator>Polarz, Sebastian</dc:creator> <dcterms:abstract xml:lang="eng">Hybrid perovskite materials are one of the most promising candidates for optoelectronic applications, e.g., solar cells and LEDs, which can be produced at low cost compared to established materials. Although this field of research has seen a huge upsurge in the past decade, there is a major lack in understanding the underlying processes, such as shape-property relationships and the role of defects. Our aerosol-assisted synthesis pathway offers the possibility to obtain methylammonium lead bromide (MAPbBr<sub>3</sub>) microcrystals from a liquid single source precursor. The differently shaped particles are aligned on several substrates, without using a directing agent or other additives. The obtained particles show good stability under dry conditions. This allows us to characterize these materials and their pure surfaces at the single-crystal level using time- and spatially resolved methods, without any influences of size-dependent effects. By optimizing the precursor for the aerosol process, we were able to eliminate any purification steps and use the materials as processed. In addition, we performed theoretical simulations to deepen the understanding of the underlying processes in the formation of the different crystal facets and their specific properties. The model system presented provides insights into the shape-related properties of MAPbBr<sub>3</sub> single crystals and their directed but ligand-free synthesis.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56531/3/Bahnmueller_2-1nvji5w21tmlq0.pdf"/> <dc:contributor>Seewald, Tobias</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:issued>2021-11-13</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-11T09:44:25Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Seewald, Tobias</dc:creator> <dc:creator>Weber, Stefan A. L.</dc:creator> <dc:contributor>Weber, Stefan A. L.</dc:contributor> <dc:creator>Yalҫinkaya, Yenal</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56531/3/Bahnmueller_2-1nvji5w21tmlq0.pdf"/> <dc:contributor>Bahnmüller, Ulrich</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Yalҫinkaya, Yenal</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-11T09:44:25Z</dcterms:available> <dc:contributor>Kuper, Henning</dc:contributor> <dcterms:title>On the Shape-Selected, Ligand-Free Preparation of Hybrid Perovskite (CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub>) Microcrystals and Their Suitability as Model-System for Single-Crystal Studies of Optoelectronic Properties</dcterms:title> <dc:creator>Becker, Jörg August</dc:creator> <dc:contributor>Polarz, Sebastian</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes