KOPS - The Institutional Repository of the University of Konstanz

Geo-Spatial Data Viewer: From Familiar Land-covering to Arbitrary Distorted Geo-Spatial Quadtree Maps

Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können am Montag, 6.2. und Dienstag, 7.2. keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted on Monday, Feb. 6 and Tuesday, Feb. 7.)

Geo-Spatial Data Viewer: From Familiar Land-covering to Arbitrary Distorted Geo-Spatial Quadtree Maps

Cite This

Files in this item

Checksum: MD5:04623e999f23546e6ad6fe170e0fc5ba

KEIM, Daniel A., Christian PANSE, Jörn SCHNEIDEWIND, Mike SIPS, 2004. Geo-Spatial Data Viewer: From Familiar Land-covering to Arbitrary Distorted Geo-Spatial Quadtree Maps. WSCG. University of West Bohemia, Campus Bory, Plzen, Czech Republic, Feb 2, 2004 - Feb 6, 2004. In: WSCG 2004, The 12-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, February 2 - 6, University of West Bohemia, Campus Bory, Plzen, Czech Republic, May/Jun, 2004

@inproceedings{Keim2004GeoSp-5652, title={Geo-Spatial Data Viewer: From Familiar Land-covering to Arbitrary Distorted Geo-Spatial Quadtree Maps}, year={2004}, booktitle={WSCG 2004, The 12-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, February 2 - 6, University of West Bohemia, Campus Bory, Plzen, Czech Republic, May/Jun, 2004}, author={Keim, Daniel A. and Panse, Christian and Schneidewind, Jörn and Sips, Mike} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/5652"> <dcterms:bibliographicCitation>First publ. as paper presented to: WSCG 2004, The 12-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, February 2 - 6, University of West Bohemia, Campus Bory, Plzen, Czech Republic, May/Jun, 2004</dcterms:bibliographicCitation> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5652"/> <dcterms:title>Geo-Spatial Data Viewer: From Familiar Land-covering to Arbitrary Distorted Geo-Spatial Quadtree Maps</dcterms:title> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:format>application/pdf</dc:format> <dc:contributor>Sips, Mike</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:31Z</dc:date> <dc:contributor>Panse, Christian</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Panse, Christian</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">In many application domains, data is collected and referenced by its geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. A noteworthy trend is the increasing size of data sets in common use, such as records of business transactions, environmental data and census demographics. These data sets often contain millions of records, or even far more. This situation creates new challenges in coping with scale. In this paper we propose a novel pixel-oriented visual data mining approach for large spatial datasets. It combines a quadtree based distortion of map regions and a local reposition of pixels within these map regions to avoid overlap in the display. Experiments shows that it produces visualizations of large data sets for the discovery of local correlations, and is practical for exploring geography-related statistical information in a variety of applications including population demographics, epidemiology, and marketing.</dcterms:abstract> <dc:contributor>Schneidewind, Jörn</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5652/1/WSCG04_GSDV.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5652/1/WSCG04_GSDV.pdf"/> <dc:creator>Schneidewind, Jörn</dc:creator> <dc:creator>Sips, Mike</dc:creator> <dc:language>eng</dc:language> <dcterms:issued>2004</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:31Z</dcterms:available> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

WSCG04_GSDV.pdf 221

This item appears in the following Collection(s)

Attribution-NonCommercial-NoDerivs 2.0 Generic Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 2.0 Generic

Search KOPS


Browse

My Account