Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)
Type of Publication: | Journal article |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-69649 |
Author: | Heczko, Martin; Hinneburg, Alexander; Keim, Daniel A.; Wawryniuk, Markus |
Year of publication: | 2004 |
Published in: | Multimedia Systems ; 10 (2004), 1. - pp. 28-40. - ISSN 0942-4962. - eISSN 1432-1882 |
DOI (citable link): | https://dx.doi.org/10.1007/s00530-004-0135-6 |
Summary: |
Typically searching image collections is based on features of the images. In most cases the features are based on the color histogram of the images. Similarity search based on color histograms is very efficient, but the quality of the search results is often rather poor. One of the reasons is that histogram-based systems only support a specific form of global similarity using the whole histogram as one vector. But there is more information in a histogram than the distribution of colors. This paper has two contributions: (1) a new generalized similarity search method based on a wavelet transformation of the color histograms and (2) a new effectiveness measure for image similarity search. Our generalized similarity search method has been developed to allow the user to search for images with similarities on arbitrary detail levels of the color histogram. We show that our new approach is more general and more effective than previous approaches while retaining a competitive performance.
|
Subject (DDC): | 004 Computer Science |
Link to License: | Attribution-NonCommercial-NoDerivs 2.0 Generic |
Bibliography of Konstanz: | Yes |
HECZKO, Martin, Alexander HINNEBURG, Daniel A. KEIM, Markus WAWRYNIUK, 2004. Multiresolution Similarity Search in Image Databases. In: Multimedia Systems. 10(1), pp. 28-40. ISSN 0942-4962. eISSN 1432-1882. Available under: doi: 10.1007/s00530-004-0135-6
@article{Heczko2004Multi-5647, title={Multiresolution Similarity Search in Image Databases}, year={2004}, doi={10.1007/s00530-004-0135-6}, number={1}, volume={10}, issn={0942-4962}, journal={Multimedia Systems}, pages={28--40}, author={Heczko, Martin and Hinneburg, Alexander and Keim, Daniel A. and Wawryniuk, Markus} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/5647"> <dc:contributor>Wawryniuk, Markus</dc:contributor> <dc:creator>Heczko, Martin</dc:creator> <dcterms:title>Multiresolution Similarity Search in Image Databases</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5647"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:29Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5647/1/multisys.pdf"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:format>application/pdf</dc:format> <dc:creator>Hinneburg, Alexander</dc:creator> <dc:language>eng</dc:language> <dcterms:bibliographicCitation>First publ. in: Multimedia Systems 10 (2004), 1, pp. 28-40</dcterms:bibliographicCitation> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:issued>2004</dcterms:issued> <dc:contributor>Hinneburg, Alexander</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:29Z</dc:date> <dc:contributor>Heczko, Martin</dc:contributor> <dc:creator>Wawryniuk, Markus</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:abstract xml:lang="eng">Typically searching image collections is based on features of the images. In most cases the features are based on the color histogram of the images. Similarity search based on color histograms is very efficient, but the quality of the search results is often rather poor. One of the reasons is that histogram-based systems only support a specific form of global similarity using the whole histogram as one vector. But there is more information in a histogram than the distribution of colors. This paper has two contributions: (1) a new generalized similarity search method based on a wavelet transformation of the color histograms and (2) a new effectiveness measure for image similarity search. Our generalized similarity search method has been developed to allow the user to search for images with similarities on arbitrary detail levels of the color histogram. We show that our new approach is more general and more effective than previous approaches while retaining a competitive performance.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5647/1/multisys.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> </rdf:Description> </rdf:RDF>
multisys.pdf | 746 |