KOPS - The Institutional Repository of the University of Konstanz

Synthetic data generation for optical flow evaluation in the neurosurgical domain

Synthetic data generation for optical flow evaluation in the neurosurgical domain

Cite This

Files in this item

Checksum: MD5:8cc0042bcd64626bb7573a44c3242cc1

PHILIPP, Markus, Neal BACHER, Jonas NIENHAUS, Lars HAUPTMANN, Laura LANG, Anna ALPEROVICH, Marielena GUTT-WILL, Andrea MATHIS, Stefan SAUR, Andreas RAABE, Franziska MATHIS-ULLRICH, 2021. Synthetic data generation for optical flow evaluation in the neurosurgical domain. In: Current Directions in Biomedical Engineering. De Gruyter. 7(1), pp. 67-71. eISSN 2364-5504. Available under: doi: 10.1515/cdbme-2021-1015

@article{Philipp2021-08-27Synth-56384, title={Synthetic data generation for optical flow evaluation in the neurosurgical domain}, year={2021}, doi={10.1515/cdbme-2021-1015}, number={1}, volume={7}, journal={Current Directions in Biomedical Engineering}, pages={67--71}, author={Philipp, Markus and Bacher, Neal and Nienhaus, Jonas and Hauptmann, Lars and Lang, Laura and Alperovich, Anna and Gutt-Will, Marielena and Mathis, Andrea and Saur, Stefan and Raabe, Andreas and Mathis-Ullrich, Franziska} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/56384"> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:issued>2021-08-27</dcterms:issued> <dc:contributor>Lang, Laura</dc:contributor> <dc:contributor>Mathis, Andrea</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56384"/> <dc:contributor>Hauptmann, Lars</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Raabe, Andreas</dc:contributor> <dc:contributor>Mathis-Ullrich, Franziska</dc:contributor> <dcterms:abstract xml:lang="eng">Towards computer-assisted neurosurgery, scene understanding algorithms for microscope video data are required. Previous work utilizes optical flow to extract spatiotemporal context from neurosurgical video sequences. However, to select an appropriate optical flow method, we need to analyze which algorithm yields the highest accuracy for the neurosurgical domain. Currently, there are no benchmark datasets available for neurosurgery. In our work, we present an approach to generate synthetic data for optical flow evaluation on the neurosurgical domain. We simulate image sequences and thereby take into account domainspecific visual conditions such as surgical instrument motion. Then, we evaluate two optical flow algorithms, Farneback and PWC-Net, on our synthetic data. Qualitative and quantitative assessments confirm that our data can be used to evaluate optical flow for the neurosurgical domain. Future work will concentrate on extending the method by modeling additional effects in neurosurgery such as elastic background motion.</dcterms:abstract> <dc:rights>Attribution 4.0 International</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Philipp, Markus</dc:creator> <dc:creator>Lang, Laura</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Mathis-Ullrich, Franziska</dc:creator> <dc:creator>Saur, Stefan</dc:creator> <dc:contributor>Bacher, Neal</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-28T09:38:35Z</dc:date> <dc:creator>Bacher, Neal</dc:creator> <dc:contributor>Nienhaus, Jonas</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56384/3/Philipp_2-at57mr73fomd8.pdf"/> <dc:creator>Alperovich, Anna</dc:creator> <dc:creator>Gutt-Will, Marielena</dc:creator> <dc:contributor>Gutt-Will, Marielena</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Saur, Stefan</dc:contributor> <dc:contributor>Philipp, Markus</dc:contributor> <dc:creator>Raabe, Andreas</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56384/3/Philipp_2-at57mr73fomd8.pdf"/> <dc:creator>Hauptmann, Lars</dc:creator> <dcterms:title>Synthetic data generation for optical flow evaluation in the neurosurgical domain</dcterms:title> <dc:creator>Nienhaus, Jonas</dc:creator> <dc:contributor>Alperovich, Anna</dc:contributor> <dc:creator>Mathis, Andrea</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-28T09:38:35Z</dcterms:available> </rdf:Description> </rdf:RDF>

Downloads since Jan 28, 2022 (Information about access statistics)

Philipp_2-at57mr73fomd8.pdf 266

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


Browse

My Account