Data Analysis in the Life Sciences : Sparking Ideas

Cite This

Files in this item

Checksum: MD5:280d858e4b6d77b089cf234b82cd640e

BERTHOLD, Michael R., 2005. Data Analysis in the Life Sciences : Sparking Ideas. In: GAMA, João, ed., Rui CAMACHO, ed., Pavel B. BRAZDIL, ed., Alípio Mário JORGE, ed., Luís TORGO, ed.. Machine Learning: ECML 2005. Berlin, Heidelberg:Springer Berlin Heidelberg, pp. 1-1. ISBN 978-3-540-29243-2. Available under: doi: 10.1007/11564096_1

@inproceedings{Berthold2005Analy-5636, title={Data Analysis in the Life Sciences : Sparking Ideas}, year={2005}, doi={10.1007/11564096_1}, number={3720}, isbn={978-3-540-29243-2}, address={Berlin, Heidelberg}, publisher={Springer Berlin Heidelberg}, series={Lecture Notes in Computer Science}, booktitle={Machine Learning: ECML 2005}, pages={1--1}, editor={Gama, João and Camacho, Rui and Brazdil, Pavel B. and Jorge, Alípio Mário and Torgo, Luís}, author={Berthold, Michael R.} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:title>Data Analysis in the Life Sciences : Sparking Ideas</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource=""/> <dcterms:isPartOf rdf:resource=""/> <dcterms:abstract xml:lang="eng">Data from various areas of Life Sciences have increasingly caught the attention of data mining and machine learning researchers. Not only is the amount of data available mind-boggling but the diverse and heterogenous nature of the information is far beyond any other data analysis problem so far. In sharp contrast to classical data analysis scenarios, the life science area poses challenges of a rather different nature for mainly two reasons. Firstly, the available data stems from heterogenous information sources of varying degrees of reliability and quality and is, without the interactive, constant interpretation of a domain expert, not useful. Furthermore, predictive models are of only marginal interest to those users instead they hope for new insights into a complex, biological system that is only partially represented within that data anyway. In this scenario, the data serves mainly to create new insights and generate new ideas that can be tested. Secondly, the notion of feature space and the accompanying measures of similarity cannot be taken for granted. Similarity measures become context dependent and it is often the case that within one analysis task several different ways of describing the objects of interest or measuring similarity between them matter. Some more recently published work in the data analysis area has started to address some of these issues. For example, data analysis in parallel universes [1], that is, the detection of patterns of interest in various different descriptor spaces at the same time, and mining of frequent, discriminative fragments in large, molecular data bases [2]. In both cases, sheer numerical performance is not the focus; it is rather the discovery of interpretable pieces of evidence that lights up new ideas in the users mind. Future work in data analysis in the life sciences needs to keep this in mind: the goal is to trigger new ideas and stimulate interesting associations.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:format>application/pdf</dc:format> <dc:date rdf:datatype="">2011-03-24T15:57:21Z</dc:date> <dcterms:available rdf:datatype="">2011-03-24T15:57:21Z</dcterms:available> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource=""/> <dc:creator>Berthold, Michael R.</dc:creator> <dcterms:rights rdf:resource=""/> <dspace:hasBitstream rdf:resource=""/> <bibo:uri rdf:resource=""/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:issued>2005</dcterms:issued> <dcterms:bibliographicCitation>First publ. in: Machine Learning. 16th European Conference on Machine Learning, Porto, Portugal, October 3-7, 2005. Proceedings. Berlin: Springer, 2005, p.1</dcterms:bibliographicCitation> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

Bert05_sparkingideas_ecmlpkdd.pdf 368

This item appears in the following Collection(s)

Attribution-NonCommercial-NoDerivs 2.0 Generic Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 2.0 Generic

Search KOPS


My Account