KOPS - The Institutional Repository of the University of Konstanz

Analysis of the Barzilai-Borwein Step-Sizes for Problems in Hilbert Spaces

Analysis of the Barzilai-Borwein Step-Sizes for Problems in Hilbert Spaces

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

AZMI, Behzad, Karl KUNISCH, 2020. Analysis of the Barzilai-Borwein Step-Sizes for Problems in Hilbert Spaces. In: Journal of Optimization Theory and Applications. Springer. 185(3), pp. 819-844. ISSN 0022-3239. eISSN 1573-2878. Available under: doi: 10.1007/s10957-020-01677-y

@article{Azmi2020Analy-56297, title={Analysis of the Barzilai-Borwein Step-Sizes for Problems in Hilbert Spaces}, year={2020}, doi={10.1007/s10957-020-01677-y}, number={3}, volume={185}, issn={0022-3239}, journal={Journal of Optimization Theory and Applications}, pages={819--844}, author={Azmi, Behzad and Kunisch, Karl} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/56297"> <dcterms:title>Analysis of the Barzilai-Borwein Step-Sizes for Problems in Hilbert Spaces</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-21T12:27:19Z</dc:date> <dcterms:abstract xml:lang="eng">The Barzilai and Borwein gradient method has received a significant amount of attention in different fields of optimization. This is due to its simplicity, computational cheapness, and efficiency in practice. In this research, based on spectral analysis techniques, root-linear global convergence for the Barzilai and Borwein method is proven for strictly convex quadratic problems posed in infinite-dimensional Hilbert spaces. The applicability of these results is demonstrated for two optimization problems governed by partial differential equations.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-21T12:27:19Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56297"/> <dc:creator>Azmi, Behzad</dc:creator> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:language>eng</dc:language> <dcterms:issued>2020</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:contributor>Azmi, Behzad</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Kunisch, Karl</dc:creator> <dc:contributor>Kunisch, Karl</dc:contributor> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account