A trust region reduced basis Pascoletti-Serafini algorithm for multi-objective PDE-constrained parameter optimization
A trust region reduced basis Pascoletti-Serafini algorithm for multi-objective PDE-constrained parameter optimization
Date
2022
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik; 401
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Working Paper/Technical Report
Publication status
Submitted
Published in
Abstract
In the present paper non-convex multi-objective parameter optimization problems are considered which are governed by elliptic parametrized partial differential equations (PDEs). To solve these problems numerically the Pascoletti-Serafini scalarization is applied and the obtained scalar optimization problems are solved by an augmented Lagrangian method. However, due to the PDE constraints, the numerical solution is very expensive so that a model reduction is utilized by using the reduced basis (RB) method. The quality of the RB approximation is ensured by a trust-region strategy which does not require any offline procedure, where the RB functions are computed in a greedy algorithm. Moreover, convergence of the proposed method is guaranteed. Numerical examples illustrate the efficiency of the proposed solution technique.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
BANHOLZER, Stefan, Luca MECHELLI, Stefan VOLKWEIN, 2022. A trust region reduced basis Pascoletti-Serafini algorithm for multi-objective PDE-constrained parameter optimizationBibTex
@techreport{Banholzer2022trust-56240, year={2022}, series={Konstanzer Schriften in Mathematik}, title={A trust region reduced basis Pascoletti-Serafini algorithm for multi-objective PDE-constrained parameter optimization}, number={401}, author={Banholzer, Stefan and Mechelli, Luca and Volkwein, Stefan}, note={Wird erscheinen in: Mathematical and Computational Applications ; von 2022} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56240"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56240"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Banholzer, Stefan</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56240/3/Banholzer_2-1id1qy27qa8666.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Banholzer, Stefan</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56240/3/Banholzer_2-1id1qy27qa8666.pdf"/> <dc:creator>Mechelli, Luca</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-20T06:55:00Z</dc:date> <dc:creator>Volkwein, Stefan</dc:creator> <dcterms:issued>2022</dcterms:issued> <dcterms:title>A trust region reduced basis Pascoletti-Serafini algorithm for multi-objective PDE-constrained parameter optimization</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-20T06:55:00Z</dcterms:available> <dcterms:abstract xml:lang="eng">In the present paper non-convex multi-objective parameter optimization problems are considered which are governed by elliptic parametrized partial differential equations (PDEs). To solve these problems numerically the Pascoletti-Serafini scalarization is applied and the obtained scalar optimization problems are solved by an augmented Lagrangian method. However, due to the PDE constraints, the numerical solution is very expensive so that a model reduction is utilized by using the reduced basis (RB) method. The quality of the RB approximation is ensured by a trust-region strategy which does not require any offline procedure, where the RB functions are computed in a greedy algorithm. Moreover, convergence of the proposed method is guaranteed. Numerical examples illustrate the efficiency of the proposed solution technique.</dcterms:abstract> <dc:contributor>Mechelli, Luca</dc:contributor> <dc:contributor>Volkwein, Stefan</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Wird erscheinen in: Mathematical and Computational Applications ; von 2022
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes