Formation of Singularities for one-dimensional relaxed compressible Navier-Stokes equations
Formation of Singularities for one-dimensional relaxed compressible Navier-Stokes equations
Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2022
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Differential Equations ; 327 (2022). - S. 145-165. - Elsevier. - ISSN 0022-0396. - eISSN 1090-2732
Zusammenfassung
We investigate the formation of singularities in one-dimensional hyperbolic compressible Navier-Stokes equations, a model proposing a relaxation leading to a hyperbolization through a nonlinear Cattaneo law for heat conduction as well as through the constitutive Maxwell type relations for the stress tensor. By using the entropy dissipation inequality, which gives the lower energy estimates of the local solutions without any smallness condition on initial data, and by constructing some useful averaged quantities we show that there are in general no global C^1 solutions for the studied system with some large initial data. This appears as a remarkable contrast to the situation without relaxation, i.e. for the classical compressible Navier-Stokes equations, where global large solutions exist. It also contrasts the fact that for the linearized system associated to the classical resp. relaxed compressible Navier-Stokes equations, the qualitative behavior is exactly the same: exponential stability in bounded domains and polynomial decay without loss of regularity for the Cauchy problem.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Singularities, Compressible Navier-Stokes equations, Large data
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
HU, Yuxi, Reinhard RACKE, Na WANG, 2022. Formation of Singularities for one-dimensional relaxed compressible Navier-Stokes equations. In: Journal of Differential Equations. Elsevier. 327, pp. 145-165. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2022.04.028BibTex
@article{Hu2022Forma-56230.2, year={2022}, doi={10.1016/j.jde.2022.04.028}, title={Formation of Singularities for one-dimensional relaxed compressible Navier-Stokes equations}, volume={327}, issn={0022-0396}, journal={Journal of Differential Equations}, pages={145--165}, author={Hu, Yuxi and Racke, Reinhard and Wang, Na} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56230.2"> <dc:language>eng</dc:language> <dc:creator>Wang, Na</dc:creator> <dcterms:abstract xml:lang="eng">We investigate the formation of singularities in one-dimensional hyperbolic compressible Navier-Stokes equations, a model proposing a relaxation leading to a hyperbolization through a nonlinear Cattaneo law for heat conduction as well as through the constitutive Maxwell type relations for the stress tensor. By using the entropy dissipation inequality, which gives the lower energy estimates of the local solutions without any smallness condition on initial data, and by constructing some useful averaged quantities we show that there are in general no global C^1 solutions for the studied system with some large initial data. This appears as a remarkable contrast to the situation without relaxation, i.e. for the classical compressible Navier-Stokes equations, where global large solutions exist. It also contrasts the fact that for the linearized system associated to the classical resp. relaxed compressible Navier-Stokes equations, the qualitative behavior is exactly the same: exponential stability in bounded domains and polynomial decay without loss of regularity for the Cauchy problem.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56230.2"/> <dc:creator>Hu, Yuxi</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Hu, Yuxi</dc:contributor> <dc:contributor>Racke, Reinhard</dc:contributor> <dcterms:issued>2022</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-18T09:17:34Z</dcterms:available> <dc:contributor>Wang, Na</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Formation of Singularities for one-dimensional relaxed compressible Navier-Stokes equations</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:creator>Racke, Reinhard</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-18T09:17:34Z</dc:date> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja