Type of Publication: | Contribution to a conference |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65694 |
Author: | Sieb, Christoph; Di Fatta, Giuseppe; Berthold, Michael R. |
Year of publication: | 2006 |
Conference: | PKDD/ECML, 2006 |
Published in: | Proceedings of the International Workshop on Parallel Data Mining (PKDD / ECML) 2006 |
Summary: |
Recently, two approaches have been introduced that distribute the molecular fragment mining problem. The first approach applies a master/worker topology, the second approach, a completely distributed peer-to-peer system, solves the scalability problem due to the bottleneck at the master node. However, in many real world scenarios the participating computing nodes cannot communicate directly due to administrative policies such as security restrictions. Thus, potential computing power is not accessible to accelerate the mining run. To solve this shortcoming, this work introduces a hierarchical topology of computing resources, which distributes the management over several levels and adapts to the natural structure of those multi-domain architectures. The most important aspect is the load balancing scheme, which has been designed and optimized for the hierarchical structure. The approach allows dynamic aggregation of heterogenous computing resources and is applied to wide area network scenarios.
|
Subject (DDC): | 004 Computer Science |
Link to License: | Attribution-NonCommercial-NoDerivs 2.0 Generic |
Bibliography of Konstanz: | Yes |
SIEB, Christoph, Giuseppe DI FATTA, Michael R. BERTHOLD, 2006. A Hierarchical Distributed Approach for Mining Molecular Fragments. PKDD/ECML, 2006. In: Proceedings of the International Workshop on Parallel Data Mining (PKDD / ECML) 2006
@inproceedings{Sieb2006Hiera-5622, title={A Hierarchical Distributed Approach for Mining Molecular Fragments}, year={2006}, booktitle={Proceedings of the International Workshop on Parallel Data Mining (PKDD / ECML) 2006}, author={Sieb, Christoph and Di Fatta, Giuseppe and Berthold, Michael R.} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/5622"> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:contributor>Di Fatta, Giuseppe</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5622"/> <dc:contributor>Sieb, Christoph</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:16Z</dc:date> <dc:format>application/pdf</dc:format> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:16Z</dcterms:available> <dc:creator>Sieb, Christoph</dc:creator> <dc:language>eng</dc:language> <dc:creator>Berthold, Michael R.</dc:creator> <dcterms:bibliographicCitation>First publ. in: Proceedings of the International Workshop on Parallel Data Mining (PKDD/ECML) 2006</dcterms:bibliographicCitation> <dcterms:issued>2006</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5622/1/A_Hierarchical_Distributed_Approach_for_Mining_Molecular_Fragments.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Recently, two approaches have been introduced that distribute the molecular fragment mining problem. The first approach applies a master/worker topology, the second approach, a completely distributed peer-to-peer system, solves the scalability problem due to the bottleneck at the master node. However, in many real world scenarios the participating computing nodes cannot communicate directly due to administrative policies such as security restrictions. Thus, potential computing power is not accessible to accelerate the mining run. To solve this shortcoming, this work introduces a hierarchical topology of computing resources, which distributes the management over several levels and adapts to the natural structure of those multi-domain architectures. The most important aspect is the load balancing scheme, which has been designed and optimized for the hierarchical structure. The approach allows dynamic aggregation of heterogenous computing resources and is applied to wide area network scenarios.</dcterms:abstract> <dc:creator>Di Fatta, Giuseppe</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:title>A Hierarchical Distributed Approach for Mining Molecular Fragments</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5622/1/A_Hierarchical_Distributed_Approach_for_Mining_Molecular_Fragments.pdf"/> </rdf:Description> </rdf:RDF>
A_Hierarchical_Distributed_Approach_for_Mining_Molecular_Fragments.pdf | 149 |