Pushing the Limit in Visual Data Exploration : Techniques and Applications

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2003
Autor:innen
Panse, Christian
Schneidewind, Jörn
Sips, Mike
Hao, Ming C.
Dayal, Umeshwar
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
GÜNTER, Andreas, ed. and others. KI 2003: Advances in artificial intelligence : 26th Annual German Conference on AI, KI 2003, Hamburg, Germany, September 15-18, 2003. Berlin [u.a.]: Springer, 2003, pp. 37-51. Lecture notes in computer science : Lecture notes in artificial intelligence. 2821. ISBN 978-3-540-20059-8
Zusammenfassung

With the rapid growth in size and number of available databases, it is necessary to explore and develop new methods for analysing the huge amounts of data. Mining information and interesting knowledge from large databases has been recognized by many researchers as a key research topic in database systems and machine learning, and by many industrial companies as an important area with an opportunity of major revenues. Analyzing the huge amount (usually tera-bytes) of data obtained from large databases such as credit card payments, telephone calls, environmental records, census demographics, however, a very difficult task. Visual Exploration and Visual Data Mining techniques apply human visual perception to the exploration of large data sets and have proven to be of high value in exploratory data analysis. Presenting data in an interactive, graphical form often opens new insights, encouraging the formation and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper we give a short overview of visual exploration techniques and present new results obtained from applying PixelBarCharts in sales analysis and internet usage management.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Information Visualization, Visual Data Mining, Visual Exploration, Knowledge Discovery, Pixel Displays
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690KEIM, Daniel A., Christian PANSE, Jörn SCHNEIDEWIND, Mike SIPS, Ming C. HAO, Umeshwar DAYAL, 2003. Pushing the Limit in Visual Data Exploration : Techniques and Applications. In: GÜNTER, Andreas, ed. and others. KI 2003: Advances in artificial intelligence : 26th Annual German Conference on AI, KI 2003, Hamburg, Germany, September 15-18, 2003. Berlin [u.a.]: Springer, 2003, pp. 37-51. Lecture notes in computer science : Lecture notes in artificial intelligence. 2821. ISBN 978-3-540-20059-8
BibTex
@inproceedings{Keim2003Pushi-5615,
  year={2003},
  title={Pushing the Limit in Visual Data Exploration : Techniques and Applications},
  number={2821},
  isbn={978-3-540-20059-8},
  publisher={Springer},
  address={Berlin [u.a.]},
  series={Lecture notes in computer science : Lecture notes in artificial intelligence},
  booktitle={KI 2003: Advances in artificial intelligence : 26th Annual German Conference on AI, KI 2003, Hamburg, Germany, September 15-18, 2003},
  pages={37--51},
  editor={Günter, Andreas},
  author={Keim, Daniel A. and Panse, Christian and Schneidewind, Jörn and Sips, Mike and Hao, Ming C. and Dayal, Umeshwar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5615">
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5615/1/KI2003.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:bibliographicCitation>First publ. in: Lecture notes in artificial intelligence, No 2821 (2003), pp. 37-51</dcterms:bibliographicCitation>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5615/1/KI2003.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:13Z</dcterms:available>
    <dc:creator>Hao, Ming C.</dc:creator>
    <dcterms:title>Pushing the Limit in Visual Data Exploration : Techniques and Applications</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:13Z</dc:date>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:language>eng</dc:language>
    <dc:creator>Panse, Christian</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2003</dcterms:issued>
    <dc:contributor>Panse, Christian</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:abstract xml:lang="eng">With the rapid growth in size and number of available databases, it is necessary to explore and develop new methods for analysing the huge amounts of data. Mining information and interesting knowledge from large databases has been recognized by many researchers as a key research topic in database systems and machine learning, and by many industrial companies as an important area with an opportunity of major revenues. Analyzing the huge amount (usually tera-bytes) of data obtained from large databases such as credit card payments, telephone calls, environmental records, census demographics, however, a very difficult task. Visual Exploration and Visual Data Mining techniques apply human visual perception to the exploration of large data sets and have proven to be of high value in exploratory data analysis. Presenting data in an interactive, graphical form often opens new insights, encouraging the formation and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper we give a short overview of visual exploration techniques and present new results obtained from applying PixelBarCharts in sales analysis and internet usage management.</dcterms:abstract>
    <dc:contributor>Sips, Mike</dc:contributor>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5615"/>
    <dc:creator>Sips, Mike</dc:creator>
    <dc:creator>Schneidewind, Jörn</dc:creator>
    <dc:contributor>Hao, Ming C.</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Schneidewind, Jörn</dc:contributor>
    <dc:creator>Dayal, Umeshwar</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen