KOPS - The Institutional Repository of the University of Konstanz

Pushing the Limit in Visual Data Exploration : Techniques and Applications

Pushing the Limit in Visual Data Exploration : Techniques and Applications

Cite This

Files in this item

Checksum: MD5:b4398dd447d2fe4519c5927da64ab616

KEIM, Daniel A., Christian PANSE, Jörn SCHNEIDEWIND, Mike SIPS, Ming C. HAO, Umeshwar DAYAL, 2003. Pushing the Limit in Visual Data Exploration : Techniques and Applications. In: GÜNTER, Andreas, ed. and others. KI 2003: Advances in artificial intelligence : 26th Annual German Conference on AI, KI 2003, Hamburg, Germany, September 15-18, 2003. Berlin [u.a.]:Springer, pp. 37-51. ISBN 978-3-540-20059-8

@inproceedings{Keim2003Pushi-5615, title={Pushing the Limit in Visual Data Exploration : Techniques and Applications}, year={2003}, number={2821}, isbn={978-3-540-20059-8}, address={Berlin [u.a.]}, publisher={Springer}, series={Lecture notes in computer science : Lecture notes in artificial intelligence}, booktitle={KI 2003: Advances in artificial intelligence : 26th Annual German Conference on AI, KI 2003, Hamburg, Germany, September 15-18, 2003}, pages={37--51}, editor={Günter, Andreas}, author={Keim, Daniel A. and Panse, Christian and Schneidewind, Jörn and Sips, Mike and Hao, Ming C. and Dayal, Umeshwar} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/5615"> <dc:contributor>Panse, Christian</dc:contributor> <dc:contributor>Dayal, Umeshwar</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:13Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:13Z</dc:date> <dcterms:bibliographicCitation>First publ. in: Lecture notes in artificial intelligence, No 2821 (2003), pp. 37-51</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2003</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Dayal, Umeshwar</dc:creator> <dc:contributor>Schneidewind, Jörn</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5615"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">With the rapid growth in size and number of available databases, it is necessary to explore and develop new methods for analysing the huge amounts of data. Mining information and interesting knowledge from large databases has been recognized by many researchers as a key research topic in database systems and machine learning, and by many industrial companies as an important area with an opportunity of major revenues. Analyzing the huge amount (usually tera-bytes) of data obtained from large databases such as credit card payments, telephone calls, environmental records, census demographics, however, a very difficult task. Visual Exploration and Visual Data Mining techniques apply human visual perception to the exploration of large data sets and have proven to be of high value in exploratory data analysis. Presenting data in an interactive, graphical form often opens new insights, encouraging the formation and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper we give a short overview of visual exploration techniques and present new results obtained from applying PixelBarCharts in sales analysis and internet usage management.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Sips, Mike</dc:creator> <dc:creator>Panse, Christian</dc:creator> <dc:contributor>Sips, Mike</dc:contributor> <dc:contributor>Hao, Ming C.</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5615/1/KI2003.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5615/1/KI2003.pdf"/> <dc:creator>Hao, Ming C.</dc:creator> <dc:creator>Schneidewind, Jörn</dc:creator> <dc:format>application/pdf</dc:format> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:title>Pushing the Limit in Visual Data Exploration : Techniques and Applications</dcterms:title> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

KI2003.pdf 355

This item appears in the following Collection(s)

Attribution-NonCommercial-NoDerivs 2.0 Generic Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 2.0 Generic

Search KOPS


My Account