KOPS - The Institutional Repository of the University of Konstanz

Frame detection in German political discourses : How far can we go without large-scale manual corpus annotation?

Frame detection in German political discourses : How far can we go without large-scale manual corpus annotation?

Cite This

Files in this item

Checksum: MD5:7d0c46d4ada2767a72e53ed8b106355f

YU, Qi, Anselm FLIETHMANN, 2021. Frame detection in German political discourses : How far can we go without large-scale manual corpus annotation?. 1st Workshop on Computational Linguistics for Political Text Analysis. Düsseldorf, Sep 6, 2021. In: REHBEIN, Ines, ed., Gabriella LAPESA, ed., Goran GLAVAS, ed. and others. Proceedings of 1st Workshop on Computational Linguistics for Political Text Analysis (CPSS-2021). Duisburg-Essen:GSCL, pp. 13-24

@inproceedings{Yu2021Frame-56106, title={Frame detection in German political discourses : How far can we go without large-scale manual corpus annotation?}, url={https://gscl.org/media/pages/arbeitskreise/cpss/cpss-2021/workshop-proceedings/352683648-1631172151/cpss2021-proceedings.pdf}, year={2021}, address={Duisburg-Essen}, publisher={GSCL}, booktitle={Proceedings of 1st Workshop on Computational Linguistics for Political Text Analysis (CPSS-2021)}, pages={13--24}, editor={Rehbein, Ines and Lapesa, Gabriella and Glavas, Goran}, author={Yu, Qi and Fliethmann, Anselm} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/56106"> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-sa/4.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/43613"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56106/3/Yu_2-5l5qm0yebj696.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56106/3/Yu_2-5l5qm0yebj696.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56106"/> <dc:rights>Attribution-NonCommercial-ShareAlike 4.0 International</dc:rights> <dc:creator>Yu, Qi</dc:creator> <dc:contributor>Yu, Qi</dc:contributor> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-13T10:48:42Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2021</dcterms:issued> <dcterms:title>Frame detection in German political discourses : How far can we go without large-scale manual corpus annotation?</dcterms:title> <dc:creator>Fliethmann, Anselm</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/42"/> <dcterms:abstract xml:lang="eng">Automated detection of frames in political discourses has gained increasing attention in natural language processing (NLP). Earlier studies in this area however focus heavily on frame detection in English using supervised machine learning approaches. Addressing the difficulty of the lack of annotated data for training and/or evaluating supervised models for low-resource languages, we investigate the potential of two NLP approaches that do not require large-scale manual corpus annotation from scratch: 1) LDA-based topic modelling, and 2) a combination of word2vec embeddings and handcrafted framing keywords based on a novel, expert-curated framing schema. We test these approaches using a novel corpus consisting of German-language news articles on the "European Refugee Crisis" between 2014-2018. We show that while topic modelling is insufficient in detecting frames in a dataset with highly homogeneous vocabulary, our second approach yields intriguing and more humanly interpretable results. This approach offers a promising opportunity to incorporate domain knowledge from political science and NLP techniques for bottom-up, explorative political text analyses.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-13T10:48:42Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/42"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/43613"/> <dc:contributor>Fliethmann, Anselm</dc:contributor> </rdf:Description> </rdf:RDF>

Downloads since Jan 13, 2022 (Information about access statistics)

Yu_2-5l5qm0yebj696.pdf 150

This item appears in the following Collection(s)

Attribution-NonCommercial-ShareAlike 4.0 International Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International

Search KOPS


Browse

My Account