Even Faster Exact k-Means Clustering

Cite This

Files in this item

Checksum: MD5:c2332c2341d76e15c2483d9f9748a51f

BORGELT, Christian, 2020. Even Faster Exact k-Means Clustering. IDA 2020: Advances in Intelligent Data Analysis XVIII. Konstanz, Apr 27, 2020 - Apr 29, 2020. In: BERTHOLD, Michael R., ed., Ad FEELDERS, ed., Georg KREMPL, ed.. Advances in Intelligent Data Analysis XVIII : 18th International Symposium on Intelligent Data Analysis, Proceedings. Cham:Springer, pp. 93-105. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-44583-6. Available under: doi: 10.1007/978-3-030-44584-3_8

@inproceedings{Borgelt2020-04-22Faste-55969, title={Even Faster Exact k-Means Clustering}, year={2020}, doi={10.1007/978-3-030-44584-3_8}, number={12080}, isbn={978-3-030-44583-6}, issn={0302-9743}, address={Cham}, publisher={Springer}, series={Lecture Notes in Computer Science}, booktitle={Advances in Intelligent Data Analysis XVIII : 18th International Symposium on Intelligent Data Analysis, Proceedings}, pages={93--105}, editor={Berthold, Michael R. and Feelders, Ad and Krempl, Georg}, author={Borgelt, Christian} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/55969"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-21T15:00:13Z</dcterms:available> <dc:creator>Borgelt, Christian</dc:creator> <dc:language>eng</dc:language> <dcterms:issued>2020-04-22</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:title>Even Faster Exact k-Means Clustering</dcterms:title> <dcterms:abstract xml:lang="eng">A naïve implementation of k-means clustering requires computing for each of the n data points the distance to each of the k cluster centers, which can result in fairly slow execution. However, by storing distance information obtained by earlier computations as well as information about distances between cluster centers, the triangle inequality can be exploited in different ways to reduce the number of needed distance computations, e.g. [3, 4, 5, 7, 11]. In this paper I present an improvement of the Exponion method [11] that generally accelerates the computations. Furthermore, by evaluating several methods on a fairly wide range of artificial data sets, I derive a kind of map, for which data set parameters which method (often) yields the lowest execution times.</dcterms:abstract> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55969/1/Borgelt_2-1kp54adjk555h8.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55969"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55969/1/Borgelt_2-1kp54adjk555h8.pdf"/> <dc:contributor>Borgelt, Christian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-21T15:00:13Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> </rdf:Description> </rdf:RDF>

Downloads since Dec 21, 2021 (Information about access statistics)

Borgelt_2-1kp54adjk555h8.pdf 131

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


Browse

My Account