Discriminative Pattern Mining in Software Fault Detection

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:148b21418377bfb533549cc75fcc590b

DI FATTA, Giuseppe, Stefan LEUE, Evghenia STEGANTOVA, 2006. Discriminative Pattern Mining in Software Fault Detection. In: Proceedings of the Third International Workshop on Software Quality Assurance (SOQUA)

@inproceedings{Di Fatta2006Discr-5594, title={Discriminative Pattern Mining in Software Fault Detection}, year={2006}, booktitle={Proceedings of the Third International Workshop on Software Quality Assurance (SOQUA)}, booktitle={Proceedings of the Third International Workshop on Software Quality Assurance (SOQUA)}, author={Di Fatta, Giuseppe and Leue, Stefan and Stegantova, Evghenia} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/5594"> <dc:language>eng</dc:language> <dcterms:title>Discriminative Pattern Mining in Software Fault Detection</dcterms:title> <dc:contributor>Di Fatta, Giuseppe</dc:contributor> <dc:contributor>Stegantova, Evghenia</dc:contributor> <dcterms:abstract xml:lang="eng">We present a method to enhance fault localization for software systems based on a frequent pattern mining algorithm. Our method is based on a large set of test cases for a given set of programs in which faults can be detected. The test executions are recorded as function call trees. Based on test oracles the tests can be classified into successful and failing tests. A frequent pattern mining algorithm is used to identify frequent subtrees in successful and failing test executions. This information is used to rank functions according to their likelihood of containing a fault. The ranking suggests an order in which to examine the functions during fault analysis. We validate our approach experimentally using a subset of Siemens benchmark programs.</dcterms:abstract> <dcterms:bibliographicCitation>First publ. as paper in: Proceedings of the Third International Workshop on Software Quality Assurance (SOQUA)</dcterms:bibliographicCitation> <dc:format>application/pdf</dc:format> <dcterms:rights rdf:resource="https://creativecommons.org/licenses/by-nc-nd/2.0/legalcode"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5594"/> <dc:creator>Stegantova, Evghenia</dc:creator> <dcterms:issued>2006</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:40Z</dcterms:available> <dc:creator>Leue, Stefan</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:40Z</dc:date> <dc:contributor>Leue, Stefan</dc:contributor> <dc:creator>Di Fatta, Giuseppe</dc:creator> <dc:rights>deposit-license</dc:rights> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

Discriminative_Pattern_Mining_in_Software_Fault_Detection.pdf 182

Das Dokument erscheint in:

deposit-license Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: deposit-license

KOPS Suche


Stöbern

Mein Benutzerkonto