Smoothed Analysis of Trie Height by Star-like PFAs
Smoothed Analysis of Trie Height by Star-like PFAs
Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2020
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung
Tries are general purpose data structures for information retrieval. The most significant parameter of a trie is its height H which equals the length of the longest common prefix of any two string in the set A over which the trie is built. Analytical investigations of random tries suggest that Exp(H)\in O(log |A|)), although H is unbounded in the worst case. Moreover, sharp results on the distribution function of H are known for many different random string sources. But because of the inherent weakness of the modeling behind average-case analysis---analyses being dominated by random data---these results can utterly explain the fact that in many practical situations the trie height is logarithmic. We propose a new semi-random string model and perform a smoothed analysis in order to give a mathematically more rigorous explanation for the practical findings. The perturbation functions which we consider are based on probabilistic finite automata (PFA) and we show that the transition probabilities of the representing PFA completely characterize the asymptotic growth of the smoothed trie height. Our main result is of dichotomous nature---logarithmic or unbounded---and is certainly not surprising at first glance, but we also give quantitative upper and lower bounds, which are derived using multivariate generating function in order to express the computations of the perturbing PFA. A direct consequence is the logarithmic trie height for edit perturbations(i.e., random insertions, deletions and substitutions).
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Analysis of Algorithms, Trie
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
ECKHARDT, Stefan, Sven KOSUB, Johannes NOWAK, 2020. Smoothed Analysis of Trie Height by Star-like PFAsBibTex
@unpublished{Eckhardt2020-03-09T12:55:36ZSmoot-55838, year={2020}, title={Smoothed Analysis of Trie Height by Star-like PFAs}, author={Eckhardt, Stefan and Kosub, Sven and Nowak, Johannes} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55838"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-10T10:41:25Z</dc:date> <dc:creator>Kosub, Sven</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55838"/> <dc:creator>Nowak, Johannes</dc:creator> <dc:contributor>Eckhardt, Stefan</dc:contributor> <dc:contributor>Kosub, Sven</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:creator>Eckhardt, Stefan</dc:creator> <dc:contributor>Nowak, Johannes</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Tries are general purpose data structures for information retrieval. The most significant parameter of a trie is its height H which equals the length of the longest common prefix of any two string in the set A over which the trie is built. Analytical investigations of random tries suggest that Exp(H)\in O(log |A|)), although H is unbounded in the worst case. Moreover, sharp results on the distribution function of H are known for many different random string sources. But because of the inherent weakness of the modeling behind average-case analysis---analyses being dominated by random data---these results can utterly explain the fact that in many practical situations the trie height is logarithmic. We propose a new semi-random string model and perform a smoothed analysis in order to give a mathematically more rigorous explanation for the practical findings. The perturbation functions which we consider are based on probabilistic finite automata (PFA) and we show that the transition probabilities of the representing PFA completely characterize the asymptotic growth of the smoothed trie height. Our main result is of dichotomous nature---logarithmic or unbounded---and is certainly not surprising at first glance, but we also give quantitative upper and lower bounds, which are derived using multivariate generating function in order to express the computations of the perturbing PFA. A direct consequence is the logarithmic trie height for edit perturbations(i.e., random insertions, deletions and substitutions).</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2020-03-09T12:55:36Z</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-10T10:41:25Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Smoothed Analysis of Trie Height by Star-like PFAs</dcterms:title> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja