KOPS - The Institutional Repository of the University of Konstanz

Adaptive Sampling and Online Enrichment Strategies for RB-Based PDE-Constrained Stochastic Optimization

Adaptive Sampling and Online Enrichment Strategies for RB-Based PDE-Constrained Stochastic Optimization

Cite This

Files in this item

Checksum: MD5:bd10251dd1428cd757b11da66dda01aa

HAUGER, Fabio, 2021. Adaptive Sampling and Online Enrichment Strategies for RB-Based PDE-Constrained Stochastic Optimization [Master thesis]. Konstanz: Universität Konstanz

@mastersthesis{Hauger2021Adapt-55763, title={Adaptive Sampling and Online Enrichment Strategies for RB-Based PDE-Constrained Stochastic Optimization}, year={2021}, address={Konstanz}, school={Universität Konstanz}, author={Hauger, Fabio} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/55763"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T08:27:47Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Hauger, Fabio</dc:creator> <dcterms:abstract xml:lang="eng">In the thesis presented, we will analyze a PDE-constrained optimal control problem with uncertain coefficients. While solving such optimal control problems, many expensive PDE solves are required, leading to high run times. It is beneficial to use a reduced order model instead of the high-dimensional PDE solves to overcome that problem. To achieve this, reduced basis (RB) methods are used in the following. This thesis contributes to the existing literature by developing a Greedy algorithm with adaptive sampling strategies for the training set and analyzing the Greedy algorithm in conjunction with stochastic descent methods and a Trust-Region framework. In addition to the Trust-Region method, further online enrichment strategies are investigated.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55763"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55763/3/Hauger_2-kvj0jeiy0v66.pdf"/> <dcterms:title>Adaptive Sampling and Online Enrichment Strategies for RB-Based PDE-Constrained Stochastic Optimization</dcterms:title> <dc:contributor>Hauger, Fabio</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T08:27:47Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2021</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55763/3/Hauger_2-kvj0jeiy0v66.pdf"/> </rdf:Description> </rdf:RDF>

Downloads since Dec 7, 2021 (Information about access statistics)

Hauger_2-kvj0jeiy0v66.pdf 82

This item appears in the following Collection(s)

Search KOPS


Browse

My Account