Adaptive Sampling and Online Enrichment Strategies for RB-Based PDE-Constrained Stochastic Optimization
Adaptive Sampling and Online Enrichment Strategies for RB-Based PDE-Constrained Stochastic Optimization
Datum
2021
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published
Erschienen in
Zusammenfassung
In the thesis presented, we will analyze a PDE-constrained optimal control problem with uncertain coefficients. While solving such optimal control problems, many expensive PDE solves are required, leading to high run times. It is beneficial to use a reduced order model instead of the high-dimensional PDE solves to overcome that problem. To achieve this, reduced basis (RB) methods are used in the following. This thesis contributes to the existing literature by developing a Greedy algorithm with adaptive sampling strategies for the training set and analyzing the Greedy algorithm in conjunction with stochastic descent methods and a Trust-Region framework. In addition to the Trust-Region method, further online enrichment strategies are investigated.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
HAUGER, Fabio, 2021. Adaptive Sampling and Online Enrichment Strategies for RB-Based PDE-Constrained Stochastic Optimization [Master thesis]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Hauger2021Adapt-55763, year={2021}, title={Adaptive Sampling and Online Enrichment Strategies for RB-Based PDE-Constrained Stochastic Optimization}, address={Konstanz}, school={Universität Konstanz}, author={Hauger, Fabio} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55763"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T08:27:47Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T08:27:47Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Hauger, Fabio</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Hauger, Fabio</dc:contributor> <dcterms:issued>2021</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55763/3/Hauger_2-kvj0jeiy0v66.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55763"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Adaptive Sampling and Online Enrichment Strategies for RB-Based PDE-Constrained Stochastic Optimization</dcterms:title> <dcterms:abstract xml:lang="eng">In the thesis presented, we will analyze a PDE-constrained optimal control problem with uncertain coefficients. While solving such optimal control problems, many expensive PDE solves are required, leading to high run times. It is beneficial to use a reduced order model instead of the high-dimensional PDE solves to overcome that problem. To achieve this, reduced basis (RB) methods are used in the following. This thesis contributes to the existing literature by developing a Greedy algorithm with adaptive sampling strategies for the training set and analyzing the Greedy algorithm in conjunction with stochastic descent methods and a Trust-Region framework. In addition to the Trust-Region method, further online enrichment strategies are investigated.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55763/3/Hauger_2-kvj0jeiy0v66.pdf"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2021
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein