Maximum Entropy Estimation via Gauss-LP Quadratures

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

THÉLY, Maxime, Tobias SUTTER, Peyman Mohajerin ESFAHANI, John LYGEROS, 2017. Maximum Entropy Estimation via Gauss-LP Quadratures. In: IFAC-PapersOnLine. Elsevier. 50(1), pp. 10470-10475. eISSN 1474-6670. Available under: doi: 10.1016/j.ifacol.2017.08.1977

@article{Thely2017Maxim-55739, title={Maximum Entropy Estimation via Gauss-LP Quadratures}, year={2017}, doi={10.1016/j.ifacol.2017.08.1977}, number={1}, volume={50}, journal={IFAC-PapersOnLine}, pages={10470--10475}, author={Thély, Maxime and Sutter, Tobias and Esfahani, Peyman Mohajerin and Lygeros, John} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/55739"> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:50:34Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Sutter, Tobias</dc:contributor> <dc:creator>Thély, Maxime</dc:creator> <dc:contributor>Esfahani, Peyman Mohajerin</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:50:34Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2017</dcterms:issued> <dcterms:title>Maximum Entropy Estimation via Gauss-LP Quadratures</dcterms:title> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Lygeros, John</dc:contributor> <dc:creator>Esfahani, Peyman Mohajerin</dc:creator> <dc:creator>Sutter, Tobias</dc:creator> <dcterms:abstract xml:lang="eng">We present an approximation method to a class of parametric integration problems that naturally appear when solving the dual of the maximum entropy estimation problem. Our method builds up on a recent generalization of Gauss quadratures via an infinite-dimensional linear program, and utilizes a convex clustering algorithm to compute an approximate solution which requires reduced computational effort. It shows to be particularly appealing when looking at problems with unusual domains and in a multi-dimensional setting. As a proof of concept we apply our method to an example problem on the unit disc.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Lygeros, John</dc:creator> <dc:contributor>Thély, Maxime</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55739"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account