Maximum Entropy Estimation via Gauss-LP Quadratures
Maximum Entropy Estimation via Gauss-LP Quadratures
No Thumbnail Available
Files
There are no files associated with this item.
Date
2017
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
IFAC-PapersOnLine ; 50 (2017), 1. - pp. 10470-10475. - Elsevier. - eISSN 1474-6670
Abstract
We present an approximation method to a class of parametric integration problems that naturally appear when solving the dual of the maximum entropy estimation problem. Our method builds up on a recent generalization of Gauss quadratures via an infinite-dimensional linear program, and utilizes a convex clustering algorithm to compute an approximate solution which requires reduced computational effort. It shows to be particularly appealing when looking at problems with unusual domains and in a multi-dimensional setting. As a proof of concept we apply our method to an example problem on the unit disc.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Entropy maximization, convex clustering, linear programming, importance sampling
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
THÉLY, Maxime, Tobias SUTTER, Peyman Mohajerin ESFAHANI, John LYGEROS, 2017. Maximum Entropy Estimation via Gauss-LP Quadratures. In: IFAC-PapersOnLine. Elsevier. 50(1), pp. 10470-10475. eISSN 1474-6670. Available under: doi: 10.1016/j.ifacol.2017.08.1977BibTex
@article{Thely2017Maxim-55739, year={2017}, doi={10.1016/j.ifacol.2017.08.1977}, title={Maximum Entropy Estimation via Gauss-LP Quadratures}, number={1}, volume={50}, journal={IFAC-PapersOnLine}, pages={10470--10475}, author={Thély, Maxime and Sutter, Tobias and Esfahani, Peyman Mohajerin and Lygeros, John} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55739"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55739"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Lygeros, John</dc:contributor> <dc:creator>Esfahani, Peyman Mohajerin</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:50:34Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Sutter, Tobias</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Thély, Maxime</dc:contributor> <dc:creator>Lygeros, John</dc:creator> <dcterms:abstract xml:lang="eng">We present an approximation method to a class of parametric integration problems that naturally appear when solving the dual of the maximum entropy estimation problem. Our method builds up on a recent generalization of Gauss quadratures via an infinite-dimensional linear program, and utilizes a convex clustering algorithm to compute an approximate solution which requires reduced computational effort. It shows to be particularly appealing when looking at problems with unusual domains and in a multi-dimensional setting. As a proof of concept we apply our method to an example problem on the unit disc.</dcterms:abstract> <dc:creator>Thély, Maxime</dc:creator> <dc:contributor>Sutter, Tobias</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:50:34Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Esfahani, Peyman Mohajerin</dc:contributor> <dcterms:title>Maximum Entropy Estimation via Gauss-LP Quadratures</dcterms:title> <dc:language>eng</dc:language> <dcterms:issued>2017</dcterms:issued> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed
Unknown