KOPS - The Institutional Repository of the University of Konstanz

A Variational Approach to Path Estimation and Parameter Inference of Hidden Diffusion Processes

A Variational Approach to Path Estimation and Parameter Inference of Hidden Diffusion Processes

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

SUTTER, Tobias, Arnab GANGULY, Heinz KOEPPL, 2016. A Variational Approach to Path Estimation and Parameter Inference of Hidden Diffusion Processes. In: Journal of Machine Learning Research. Microtome Publishing. 17, 190. ISSN 1532-4435. eISSN 1533-7928

@article{Sutter2016Varia-55732, title={A Variational Approach to Path Estimation and Parameter Inference of Hidden Diffusion Processes}, url={https://jmlr.csail.mit.edu/papers/v17/16-075.html}, year={2016}, volume={17}, issn={1532-4435}, journal={Journal of Machine Learning Research}, author={Sutter, Tobias and Ganguly, Arnab and Koeppl, Heinz}, note={Article Number: 190} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/55732"> <dc:contributor>Sutter, Tobias</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:06:19Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:06:19Z</dc:date> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Ganguly, Arnab</dc:creator> <dc:contributor>Ganguly, Arnab</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55732"/> <dcterms:abstract xml:lang="eng">We consider a hidden Markov model, where the signal process, given by a diffusion, is only indirectly observed through some noisy measurements. The article develops a variational method for approximating the hidden states of the signal process given the full set of observations. This, in particular, leads to systematic approximations of the smoothing densities of the signal process. The paper then demonstrates how an efficient inference scheme, based on this variational approach to the approximation of the hidden states, can be designed to estimate the unknown parameters of stochastic differential equations. Two examples at the end illustrate the efficacy and the accuracy of the presented method.</dcterms:abstract> <dc:creator>Koeppl, Heinz</dc:creator> <dcterms:title>A Variational Approach to Path Estimation and Parameter Inference of Hidden Diffusion Processes</dcterms:title> <dc:creator>Sutter, Tobias</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Koeppl, Heinz</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dcterms:issued>2016</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account