Shape-Embedded-Histograms for Visual Data Mining

Cite This

Files in this item

Checksum: MD5:bcc60c7a30afbb56a997f00a0e47546d

AMIR, Amihood, Reuven KASHI, Daniel A. KEIM, Nathan S. NETANYAHU, Markus WAWRYNIUK, 2004. Shape-Embedded-Histograms for Visual Data Mining. VisSym 2004. Konstanz, Germany, May 19, 2004 - May 21, 2004. In: VisSym 2004: Joint Eurographics/IEEE TCVG Symposium on Visualization, pp. 55-64. Available under: doi: 10.2312/VisSym/VisSym04/055-064

@inproceedings{Amir2004Shape-5572, title={Shape-Embedded-Histograms for Visual Data Mining}, year={2004}, doi={10.2312/VisSym/VisSym04/055-064}, booktitle={VisSym 2004: Joint Eurographics/IEEE TCVG Symposium on Visualization}, pages={55--64}, author={Amir, Amihood and Kashi, Reuven and Keim, Daniel A. and Netanyahu, Nathan S. and Wawryniuk, Markus} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:hasPart rdf:resource=""/> <dc:contributor>Kashi, Reuven</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Netanyahu, Nathan S.</dc:contributor> <dcterms:bibliographicCitation>First publ. in: VisSym 2004: Joint Eurographics/IEEE TCVG Symposium on Visualization; Konstanz, Germany, May 19-21, 2004, pp. 55-64</dcterms:bibliographicCitation> <dcterms:issued>2004</dcterms:issued> <dspace:isPartOfCollection rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:creator>Wawryniuk, Markus</dc:creator> <dcterms:isPartOf rdf:resource=""/> <dcterms:rights rdf:resource=""/> <dc:contributor>Amir, Amihood</dc:contributor> <dc:contributor>Wawryniuk, Markus</dc:contributor> <dc:date rdf:datatype="">2011-03-24T15:56:31Z</dc:date> <dcterms:available rdf:datatype="">2011-03-24T15:56:31Z</dcterms:available> <dcterms:title>Shape-Embedded-Histograms for Visual Data Mining</dcterms:title> <dspace:hasBitstream rdf:resource=""/> <bibo:uri rdf:resource=""/> <dc:creator>Netanyahu, Nathan S.</dc:creator> <dc:creator>Amir, Amihood</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:format>application/pdf</dc:format> <dcterms:abstract xml:lang="eng">Scatterplots are widely used in exploratory data analysis and class visualization. The advantages of scatterplots are that they are easy to understand and allow the user to draw conclusions about the attributes which span the projection screen. Unfortunately, scatterplots have the overplotting problem which is especially critical when high-dimensional data are mapped to low-dimensional visualizations. Overplotting makes it hard to detect the structure in the data, such as dependencies or areas of high density. In this paper we show that by extending the concept of Pixel Validity (1) the problem of overplotting or occlusion can be avoided and (2) the user has the possibility to see information about an additional third variable. In our extension of the Pixel Validity concept, we summarize the data which are projected onto a given region by generating a histogram over the required attribute. This is then embedded in the visualization by a pixel-based technique.</dcterms:abstract> <dc:creator>Kashi, Reuven</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

Shape_Embedded_Histograms_for_Visual_Data_Mining.pdf 120

This item appears in the following Collection(s)

Attribution-NonCommercial-NoDerivs 2.0 Generic Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 2.0 Generic

Search KOPS


My Account