Multi-Resolution Techniques for Visual Exploration of Large Time-Series Data


Dateien zu dieser Ressource

Prüfsumme: MD5:8fbf397112573ab637b28975147d3c11

HAO, Ming C., Umeshwar DAYAL, Daniel A. KEIM, Tobias SCHRECK, 2007. Multi-Resolution Techniques for Visual Exploration of Large Time-Series Data. EUROVIS 2007. Norrköping, Sweden, 23. Mai 2007 - 25. Mai 2007. In: EUROVIS 2007: Eurographics/IEEE VGTC Symposium on Visualization, pp. 27-34. Available under: doi: 10.2312/VisSym/EuroVis07/027-034

@inproceedings{Hao2007Multi-5571, title={Multi-Resolution Techniques for Visual Exploration of Large Time-Series Data}, year={2007}, doi={10.2312/VisSym/EuroVis07/027-034}, booktitle={EUROVIS 2007: Eurographics/IEEE VGTC Symposium on Visualization}, pages={27--34}, author={Hao, Ming C. and Dayal, Umeshwar and Keim, Daniel A. and Schreck, Tobias} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:available rdf:datatype="">2011-03-24T15:56:30Z</dcterms:available> <dcterms:issued>2007</dcterms:issued> <dcterms:isPartOf rdf:resource=""/> <dc:format>application/pdf</dc:format> <dc:contributor>Dayal, Umeshwar</dc:contributor> <dcterms:abstract xml:lang="eng">Time series are a data type of utmost importance in many domains such as business management and service monitoring. We address the problem of visualizing large time-related data sets which are difficult to visualize effectively with standard techniques given the limitations of current display devices. We propose a framework for intelligent time- and data-dependent visual aggregation of data along multiple resolution levels. This idea leads to effective visualization support for long time-series data providing both focus and context. The basic idea of the technique is that either data-dependent or application-dependent, display space is allocated in proportion to the degree of interest of data subintervals, thereby (a) guiding the user in perceiving important information, and (b) freeing required display space to visualize all the data. The automatic part of the framework can accommodate any time series analysis algorithm yielding a numeric degree of interest scale. We apply our techniques on real-world data sets, compare it with the standard visualization approach, and conclude the usefulness and scalability of the approach.</dcterms:abstract> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:contributor>Hao, Ming C.</dc:contributor> <bibo:uri rdf:resource=""/> <dcterms:rights rdf:resource=""/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Dayal, Umeshwar</dc:creator> <dspace:isPartOfCollection rdf:resource=""/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Multi-Resolution Techniques for Visual Exploration of Large Time-Series Data</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Hao, Ming C.</dc:creator> <dcterms:bibliographicCitation>First publ. in: EUROVIS 2007: Eurographics/IEEE VGTC Symposium on Visualization ; Norrköping, Sweden, May 23th-25th, 2007, pp. 27-34</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource=""/> <dspace:hasBitstream rdf:resource=""/> <dc:creator>Schreck, Tobias</dc:creator> <dc:date rdf:datatype="">2011-03-24T15:56:30Z</dc:date> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

Multi_Resolution_Techniques_for_Visual_Exploration_of_Large_Time_Series_Data.pdf 537

Das Dokument erscheint in:

terms-of-use Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: terms-of-use

KOPS Suche


Mein Benutzerkonto