Missing Values and Learning of Fuzzy Rules

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:b2267f085a30fe6433cca443998fd76a

BERTHOLD, Michael R., Klaus-Peter HUBER, 1998. Missing Values and Learning of Fuzzy Rules. In: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 6(2), pp. 171-178

@article{Berthold1998Missi-5566, title={Missing Values and Learning of Fuzzy Rules}, year={1998}, doi={10.1142/S021848859800015X}, number={2}, volume={6}, journal={International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems}, pages={171--178}, author={Berthold, Michael R. and Huber, Klaus-Peter} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/5566"> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:bibliographicCitation>First publ. in: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6 (1998), 2, pp. 171-178</dcterms:bibliographicCitation> <dc:rights>deposit-license</dc:rights> <dcterms:title>Missing Values and Learning of Fuzzy Rules</dcterms:title> <dcterms:issued>1998</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5566"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:28Z</dcterms:available> <dc:format>application/pdf</dc:format> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:28Z</dc:date> <dc:language>eng</dc:language> <dc:creator>Huber, Klaus-Peter</dc:creator> <dcterms:abstract xml:lang="eng">In this paper a technique is proposed to tolerate missing values based on a system of fuzzy rules for classification. The presented method is mathematically solid but nevertheless easy and efficient to implement. Three possible applications of this methodology are outlined: the classification of patterns with an incomplete feature vector, the completion of the input vector when a certain class is desired, and the training or automatic construction of a fuzzy rule set based on incomplete training data. In contrast to a static replacement of the missing values, here the evolving model is used to predict the most possible values for the missing attributes. Benchmark datasets are used to demonstrate the capability of the presented approach in a fuzzy learning environment.</dcterms:abstract> <dc:contributor>Huber, Klaus-Peter</dc:contributor> <dcterms:rights rdf:resource="https://creativecommons.org/licenses/by-nc-nd/2.0/legalcode"/> <dc:creator>Berthold, Michael R.</dc:creator> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

BeHu98_missingvalues_ijufkbs.pdf 116

Das Dokument erscheint in:

deposit-license Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: deposit-license

KOPS Suche


Stöbern

Mein Benutzerkonto