KOPS - The Institutional Repository of the University of Konstanz

On the effect of boundary conditions on the scalability of Schwarz methods

On the effect of boundary conditions on the scalability of Schwarz methods

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

CIARAMELLA, Gabriele, Luca MECHELLI, 2021. On the effect of boundary conditions on the scalability of Schwarz methods

@unpublished{Ciaramella2021-03-27T09:12:19Zeffec-55637, title={On the effect of boundary conditions on the scalability of Schwarz methods}, year={2021}, author={Ciaramella, Gabriele and Mechelli, Luca} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/55637"> <dc:contributor>Mechelli, Luca</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Ciaramella, Gabriele</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-24T10:31:28Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-24T10:31:28Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">In contrast with classical Schwarz theory, recent results have shown that for special domain geometries, one-level Schwarz methods can be scalable. This property has been proved for the Laplace equation and external Dirichlet boundary conditions. Much less is known if mixed boundary conditions are considered. This short manuscript focuses on the convergence and scalability analysis of one-level parallel Schwarz method and optimized Schwarz method for several different external configurations of boundary conditions, i.e., mixed Dirichlet, Neumann and Robin conditions.</dcterms:abstract> <dc:creator>Mechelli, Luca</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55637"/> <dc:contributor>Ciaramella, Gabriele</dc:contributor> <dcterms:title>On the effect of boundary conditions on the scalability of Schwarz methods</dcterms:title> <dcterms:issued>2021-03-27T09:12:19Z</dcterms:issued> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account