Two Structure-Preserving Time Discretizations for Gradient Flows

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

JÜNGEL, Ansgar, Ulisse STEFANELLI, Lara TRUSSARDI, 2019. Two Structure-Preserving Time Discretizations for Gradient Flows. In: Applied Mathematics & Optimization. Springer. 80(3), pp. 733-764. ISSN 0095-4616. eISSN 1432-0606. Available under: doi: 10.1007/s00245-019-09605-x

@article{Jungel2019Struc-55536, title={Two Structure-Preserving Time Discretizations for Gradient Flows}, year={2019}, doi={10.1007/s00245-019-09605-x}, number={3}, volume={80}, issn={0095-4616}, journal={Applied Mathematics & Optimization}, pages={733--764}, author={Jüngel, Ansgar and Stefanelli, Ulisse and Trussardi, Lara} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/55536"> <dcterms:issued>2019</dcterms:issued> <dc:creator>Trussardi, Lara</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55536"/> <dc:contributor>Jüngel, Ansgar</dc:contributor> <dc:contributor>Trussardi, Lara</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-12T14:15:03Z</dcterms:available> <dcterms:abstract xml:lang="eng">The equality between dissipation and energy drop is a structural property of gradient-flow dynamics. The classical implicit Euler scheme fails to reproduce this equality at the discrete level. We discuss two modifications of the Euler scheme satisfying an exact energy equality at the discrete level. Existence of discrete solutions and their convergence as the fineness of the partition goes to zero are discussed. Eventually, we address extensions to generalized gradient flows, GENERIC flows, and curves of maximal slope in metric spaces.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-12T14:15:03Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Jüngel, Ansgar</dc:creator> <dc:creator>Stefanelli, Ulisse</dc:creator> <dcterms:title>Two Structure-Preserving Time Discretizations for Gradient Flows</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dc:contributor>Stefanelli, Ulisse</dc:contributor> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account