KOPS - The Institutional Repository of the University of Konstanz

Nonlocal-to-Local Convergence of Cahn–Hilliard Equations : Neumann Boundary Conditions and Viscosity Terms

Nonlocal-to-Local Convergence of Cahn–Hilliard Equations : Neumann Boundary Conditions and Viscosity Terms

Cite This

Files in this item

Checksum: MD5:89c96d5af4e6589509a9add920487a77

DAVOLI, Elisa, Luca SCARPA, Lara TRUSSARDI, 2021. Nonlocal-to-Local Convergence of Cahn–Hilliard Equations : Neumann Boundary Conditions and Viscosity Terms. In: Archive for Rational Mechanics and Analysis. Springer. 239(1), pp. 117-149. ISSN 0003-9527. eISSN 1432-0673. Available under: doi: 10.1007/s00205-020-01573-9

@article{Davoli2021Nonlo-55533, title={Nonlocal-to-Local Convergence of Cahn–Hilliard Equations : Neumann Boundary Conditions and Viscosity Terms}, year={2021}, doi={10.1007/s00205-020-01573-9}, number={1}, volume={239}, issn={0003-9527}, journal={Archive for Rational Mechanics and Analysis}, pages={117--149}, author={Davoli, Elisa and Scarpa, Luca and Trussardi, Lara} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/55533"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:contributor>Scarpa, Luca</dc:contributor> <dc:creator>Trussardi, Lara</dc:creator> <dc:creator>Davoli, Elisa</dc:creator> <dc:contributor>Trussardi, Lara</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-12T12:57:28Z</dc:date> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:title>Nonlocal-to-Local Convergence of Cahn–Hilliard Equations : Neumann Boundary Conditions and Viscosity Terms</dcterms:title> <dc:contributor>Davoli, Elisa</dc:contributor> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55533/1/Davoli_2-1lc36jau2d9mh9.pdf"/> <dcterms:issued>2021</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-12T12:57:28Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">We consider a class of nonlocal viscous Cahn-Hilliard equations with Neumann boundary conditions for the chemical potential. The double-well potential is allowed to be singular (e.g. of logarithmic type), while the singularity of the convolution kernel does not fall in any available existence theory under Neumann boundary conditions. We prove well-posedness for the nonlocal equation in a suitable variational sense. Secondly, we show that the solutions to the nonlocal equation converge to the corresponding solutions to the local equation, as the convolution kernels approximate a Dirac delta. The asymptotic behaviour is analyzed by means of monotone analysis and Gamma convergence results, both when the limiting local Cahn-Hilliard equation is of viscous type and of pure type.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55533/1/Davoli_2-1lc36jau2d9mh9.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Scarpa, Luca</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55533"/> </rdf:Description> </rdf:RDF>

Downloads since Nov 12, 2021 (Information about access statistics)

Davoli_2-1lc36jau2d9mh9.pdf 59

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


Browse

My Account