Memory and forecasting capacities of nonlinear recurrent networks

Cite This

Files in this item

Checksum: MD5:864fe9813e84a2c1d697069de6beaace

GONON, Lukas, Lyudmila GRIGORYEVA, Juan-Pablo ORTEGA, 2020. Memory and forecasting capacities of nonlinear recurrent networks. In: Physica D: Nonlinear Phenomena. Elsevier. 414, 132721. ISSN 0167-2789. eISSN 1872-8022. Available under: doi: 10.1016/j.physd.2020.132721

@article{Gonon2020Memor-55524, title={Memory and forecasting capacities of nonlinear recurrent networks}, year={2020}, doi={10.1016/j.physd.2020.132721}, volume={414}, issn={0167-2789}, journal={Physica D: Nonlinear Phenomena}, author={Gonon, Lukas and Grigoryeva, Lyudmila and Ortega, Juan-Pablo}, note={Article Number: 132721} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:abstract xml:lang="eng">The notion of memory capacity, originally introduced for echo state and linear networks with independent inputs, is generalized to nonlinear recurrent networks with stationary but dependent inputs. The presence of dependence in the inputs makes natural the introduction of the network forecasting capacity, that measures the possibility of forecasting time series values using network states. Generic bounds for memory and forecasting capacities are formulated in terms of the number of neurons of the nonlinear recurrent network and the autocovariance function or the spectral density of the input. These bounds generalize well-known estimates in the literature to a dependent inputs setup. Finally, for the particular case of linear recurrent networks with independent inputs it is proved that the memory capacity is given by the rank of the associated controllability matrix, a fact that has been for a long time assumed to be true without proof by the community.</dcterms:abstract> <bibo:uri rdf:resource=""/> <dc:contributor>Ortega, Juan-Pablo</dc:contributor> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource=""/> <dcterms:title>Memory and forecasting capacities of nonlinear recurrent networks</dcterms:title> <dcterms:available rdf:datatype="">2021-11-12T10:15:08Z</dcterms:available> <dc:contributor>Grigoryeva, Lyudmila</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dspace:hasBitstream rdf:resource=""/> <dcterms:issued>2020</dcterms:issued> <dc:creator>Gonon, Lukas</dc:creator> <dc:creator>Ortega, Juan-Pablo</dc:creator> <dc:creator>Grigoryeva, Lyudmila</dc:creator> <dcterms:hasPart rdf:resource=""/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="">2021-11-12T10:15:08Z</dc:date> <dc:contributor>Gonon, Lukas</dc:contributor> <dcterms:rights rdf:resource=""/> </rdf:Description> </rdf:RDF>

Downloads since Nov 12, 2021 (Information about access statistics)

Gonon_2-1341f261k0x0z6.pdf 89

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


My Account