Convex monotone semigroups on lattices of continuous functions
Convex monotone semigroups on lattices of continuous functions
Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung
We consider convex monotone C0-semigroups on a Banach lattice, which is assumed to be a Riesz subspace of a σ-Dedekind complete Banach lattice. Typical examples include the space of all bounded uniformly continuous functions and the space of all continuous functions vanishing at infinity. We show that the domain of the classical generator of a convex semigroup is typically not invariant. Therefore, we propose alternative versions for the domain, such as the monotone domain and the Lipschitz set, for which we prove invariance under the semigroup. As a main result, we obtain the uniqueness of the semigroup in terms of an extended version of the generator. The results are illustrated with several examples related to Hamilton-Jacobi-Bellman equations, including nonlinear versions of the shift semigroup and the heat equation. In particular, we determine their symmetric Lipschitz sets, which are invariant and allow to understand the generators in a weak sense.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
DENK, Robert, Michael KUPPER, Max NENDEL, 2021. Convex monotone semigroups on lattices of continuous functionsBibTex
@unpublished{Denk2021Conve-55474, year={2021}, title={Convex monotone semigroups on lattices of continuous functions}, author={Denk, Robert and Kupper, Michael and Nendel, Max} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55474"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T13:51:05Z</dc:date> <dc:language>eng</dc:language> <dcterms:issued>2021</dcterms:issued> <dc:creator>Kupper, Michael</dc:creator> <dc:creator>Nendel, Max</dc:creator> <dc:contributor>Denk, Robert</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55474"/> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">We consider convex monotone C<sub>0</sub>-semigroups on a Banach lattice, which is assumed to be a Riesz subspace of a σ-Dedekind complete Banach lattice. Typical examples include the space of all bounded uniformly continuous functions and the space of all continuous functions vanishing at infinity. We show that the domain of the classical generator of a convex semigroup is typically not invariant. Therefore, we propose alternative versions for the domain, such as the monotone domain and the Lipschitz set, for which we prove invariance under the semigroup. As a main result, we obtain the uniqueness of the semigroup in terms of an extended version of the generator. The results are illustrated with several examples related to Hamilton-Jacobi-Bellman equations, including nonlinear versions of the shift semigroup and the heat equation. In particular, we determine their symmetric Lipschitz sets, which are invariant and allow to understand the generators in a weak sense.</dcterms:abstract> <dc:contributor>Nendel, Max</dc:contributor> <dcterms:title>Convex monotone semigroups on lattices of continuous functions</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T13:51:05Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Kupper, Michael</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Denk, Robert</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja