Marginal and Dependence Uncertainty : Bounds, Optimal Transport, and Sharpness

No Thumbnail Available
Files
There are no files associated with this item.
Date
2022
Authors
Lux, Thibaut
Papapantoleon, Antonis
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
SIAM Journal on Control and Optimization ; 60 (2022), 1. - pp. 140-434. - SIAM. - ISSN 0887-4603. - eISSN 1095-7138
Abstract
Motivated by applications in model-free finance and quantitative risk management, we consider Fréchet classes of multivariate distribution functions where additional information on the joint distribution is assumed, while uncertainty in the marginals is also possible. We derive optimal transport duality results for these Fréchet classes that extend previous results in the related literature. These proofs are based on representation results for convex increasing functionals and the explicit computation of the conjugates. We show that the dual transport problem admits an explicit solution for the function $f=1_B$, where $B$ is a rectangular subset of $\mathbb{R}^d$, and provide an intuitive geometric interpretation of this result. The improved Fréchet--Hoeffding bounds provide ad hoc bounds for these Fréchet classes. We show that the improved Fréchet--Hoeffding bounds are pointwise sharp for these classes in the presence of uncertainty in the marginals, while a counterexample yields that they are not pointwise sharp in the absence of uncertainty in the marginals, even in dimension 2. The latter result sheds new light on the improved Fréchet--Hoeffding bounds, since Tankov [J. Appl. Probab., 48 (2011), pp. 389--403] has showed that, under certain conditions, these bounds are sharp in dimension 2.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BARTL, Daniel, Michael KUPPER, Thibaut LUX, Antonis PAPAPANTOLEON, Stephan ECKSTEIN, 2022. Marginal and Dependence Uncertainty : Bounds, Optimal Transport, and Sharpness. In: SIAM Journal on Control and Optimization. SIAM. 60(1), pp. 140-434. ISSN 0887-4603. eISSN 1095-7138. Available under: doi: 10.1137/21M144709X
BibTex
@article{Bartl2022Margi-55473.2,
  year={2022},
  doi={10.1137/21M144709X},
  title={Marginal and Dependence Uncertainty : Bounds, Optimal Transport, and Sharpness},
  number={1},
  volume={60},
  issn={0887-4603},
  journal={SIAM Journal on Control and Optimization},
  pages={140--434},
  author={Bartl, Daniel and Kupper, Michael and Lux, Thibaut and Papapantoleon, Antonis and Eckstein, Stephan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55473.2">
    <dc:contributor>Kupper, Michael</dc:contributor>
    <dc:contributor>Lux, Thibaut</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Lux, Thibaut</dc:creator>
    <dc:contributor>Bartl, Daniel</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Marginal and Dependence Uncertainty : Bounds, Optimal Transport, and Sharpness</dcterms:title>
    <dc:creator>Bartl, Daniel</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55473.2"/>
    <dcterms:issued>2022</dcterms:issued>
    <dc:contributor>Eckstein, Stephan</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Papapantoleon, Antonis</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-24T10:37:25Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-24T10:37:25Z</dc:date>
    <dc:creator>Kupper, Michael</dc:creator>
    <dc:contributor>Papapantoleon, Antonis</dc:contributor>
    <dcterms:abstract xml:lang="eng">Motivated by applications in model-free finance and quantitative risk management, we consider Fréchet classes of multivariate distribution functions where additional information on the joint distribution is assumed, while uncertainty in the marginals is also possible. We derive optimal transport duality results for these Fréchet classes that extend previous results in the related literature. These proofs are based on representation results for convex increasing functionals and the explicit computation of the conjugates. We show that the dual transport problem admits an explicit solution for the function $f=1_B$, where $B$ is a rectangular subset of $\mathbb{R}^d$, and provide an intuitive geometric interpretation of this result. The improved Fréchet--Hoeffding bounds provide ad hoc bounds for these Fréchet classes. We show that the improved Fréchet--Hoeffding bounds are pointwise sharp for these classes in the presence of uncertainty in the marginals, while a counterexample yields that they are not pointwise sharp in the absence of uncertainty in the marginals, even in dimension 2. The latter result sheds new light on the improved Fréchet--Hoeffding bounds, since Tankov [J. Appl. Probab., 48 (2011), pp. 389--403] has showed that, under certain conditions, these bounds are sharp in dimension 2.</dcterms:abstract>
    <dc:creator>Eckstein, Stephan</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes

Version History

Now showing 1 - 2 of 2
VersionDateSummary
2*
2022-03-24 10:35:31
2021-11-08 13:47:34
* Selected version