KOPS - The Institutional Repository of the University of Konstanz

Global well-posedness of the Cauchy problem for the 3D Jordan–Moore–Gibson–Thompson equation

Global well-posedness of the Cauchy problem for the 3D Jordan–Moore–Gibson–Thompson equation

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

RACKE, Reinhard, Belkacem SAID-HOUARI, 2021. Global well-posedness of the Cauchy problem for the 3D Jordan–Moore–Gibson–Thompson equation. In: Communications in Contemporary Mathematics. World Scientific Publishing. 23(07), 2050069. ISSN 0219-1997. eISSN 1793-6683. Available under: doi: 10.1142/S0219199720500698

@article{Racke2021Globa-55439, title={Global well-posedness of the Cauchy problem for the 3D Jordan–Moore–Gibson–Thompson equation}, year={2021}, doi={10.1142/S0219199720500698}, number={07}, volume={23}, issn={0219-1997}, journal={Communications in Contemporary Mathematics}, author={Racke, Reinhard and Said-Houari, Belkacem}, note={Article Number: 2050069} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/55439"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-05T08:26:47Z</dcterms:available> <dc:creator>Racke, Reinhard</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Racke, Reinhard</dc:contributor> <dcterms:abstract xml:lang="eng">We consider the Cauchy problem of a third order in time nonlinear equation known as the Jordan–Moore–Gibson–Thompson (JMGT) equation arising in acoustics as an alternative model to the well-known Kuznetsov equation. We show a local existence result in appropriate function spaces, and, using the energy method together with a bootstrap argument, we prove a global existence result for small data, without using the linear decay. Finally, polynomial decay rates in time for a norm related to the solution will be obtained.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2021</dcterms:issued> <dc:creator>Said-Houari, Belkacem</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-05T08:26:47Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55439"/> <dc:contributor>Said-Houari, Belkacem</dc:contributor> <dcterms:title>Global well-posedness of the Cauchy problem for the 3D Jordan–Moore–Gibson–Thompson equation</dcterms:title> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account