COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms
COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms
Date
2021
Authors
Ostaszewski, Marek
Glaab, Enrico
Ruepp, Andreas
Fobo, Gisela
Montrone, Corinna
Brauner, Barbara
Frishman, Goar
Monraz Gómez, Luis Cristóbal
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Molecular systems biology ; 17 (2021), 10. - e10387. - Wiley. - eISSN 1744-4292
Abstract
We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
computable knowledge repository; large-scale biocuration; omics data analysis; open access community effort; systems biomedicine
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
OSTASZEWSKI, Marek, Enrico GLAAB, Andreas RUEPP, Gisela FOBO, Corinna MONTRONE, Barbara BRAUNER, Goar FRISHMAN, Luis Cristóbal MONRAZ GÓMEZ, Hanna BORLINGHAUS, Falk SCHREIBER, 2021. COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms. In: Molecular systems biology. Wiley. 17(10), e10387. eISSN 1744-4292. Available under: doi: 10.15252/msb.202110387BibTex
@article{Ostaszewski2021-10COVID-55338, year={2021}, doi={10.15252/msb.202110387}, title={COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms}, number={10}, volume={17}, journal={Molecular systems biology}, author={Ostaszewski, Marek and Glaab, Enrico and Ruepp, Andreas and Fobo, Gisela and Montrone, Corinna and Brauner, Barbara and Frishman, Goar and Monraz Gómez, Luis Cristóbal and Borlinghaus, Hanna and Schreiber, Falk}, note={Article Number: e10387} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55338"> <dc:creator>Montrone, Corinna</dc:creator> <dc:creator>Glaab, Enrico</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55338/1/Ostaszewski_2-7divik1063rv1.pdf"/> <dc:contributor>Borlinghaus, Hanna</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Frishman, Goar</dc:contributor> <dc:creator>Schreiber, Falk</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms</dcterms:title> <dc:contributor>Fobo, Gisela</dc:contributor> <dc:creator>Ruepp, Andreas</dc:creator> <dc:creator>Ostaszewski, Marek</dc:creator> <dc:creator>Fobo, Gisela</dc:creator> <dc:contributor>Glaab, Enrico</dc:contributor> <dcterms:issued>2021-10</dcterms:issued> <dc:contributor>Monraz Gómez, Luis Cristóbal</dc:contributor> <dc:creator>Brauner, Barbara</dc:creator> <dc:contributor>Montrone, Corinna</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-25T09:48:11Z</dc:date> <dc:creator>Monraz Gómez, Luis Cristóbal</dc:creator> <dc:contributor>Ostaszewski, Marek</dc:contributor> <dc:creator>Frishman, Goar</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55338"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55338/1/Ostaszewski_2-7divik1063rv1.pdf"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Brauner, Barbara</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-25T09:48:11Z</dcterms:available> <dc:creator>Borlinghaus, Hanna</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Ruepp, Andreas</dc:contributor> <dc:contributor>Schreiber, Falk</dc:contributor> <dcterms:abstract xml:lang="eng">We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes