Time Series Model Attribution Visualizations as Explanations

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

SCHLEGEL, Udo, Daniel A. KEIM, 2021. Time Series Model Attribution Visualizations as Explanations. 2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX). New Orleans, LA, Oct 24, 2021 - Oct 25, 2021. In: 2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX). Piscataway, NJ:IEEE, pp. 27-31. ISBN 978-1-6654-1817-1. Available under: doi: 10.1109/TREX53765.2021.00010

@inproceedings{Schlegel2021-09-27T10:44:07ZSerie-55189, title={Time Series Model Attribution Visualizations as Explanations}, year={2021}, doi={10.1109/TREX53765.2021.00010}, isbn={978-1-6654-1817-1}, address={Piscataway, NJ}, publisher={IEEE}, booktitle={2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX)}, pages={27--31}, author={Schlegel, Udo and Keim, Daniel A.} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/55189"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-08T08:45:54Z</dc:date> <dcterms:title>Time Series Model Attribution Visualizations as Explanations</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55189"/> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-08T08:45:54Z</dcterms:available> <dcterms:issued>2021-09-27T10:44:07Z</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Schlegel, Udo</dc:contributor> <dc:creator>Schlegel, Udo</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:abstract xml:lang="eng">Attributions are a common local explanation technique for deep learning models on single samples as they are easily extractable and demonstrate the relevance of input values. In many cases, heatmaps visualize such attributions for samples, for instance, on images. However, heatmaps are not always the ideal visualization to explain certain model decisions for other data types. In this review, we focus on attribution visualizations for time series. We collect attribution heatmap visualizations and some alternatives, discuss the advantages as well as disadvantages and give a short position towards future opportunities for attributions and explanations for time series.</dcterms:abstract> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account