Invariant manifolds in differential algebraic equations of index 3 and in their Runge-Kutta discretizations
Lade...
Dateien
Datum
2007
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung
In the present paper we analyze the geometric properties of projected Runge-Kutta methods when applied to index 3 differential algebraic equations in Hessenberg form. These methods admit the integration of index 3 DAEs without any drift effects. We show that the phase portrait is well reproduced in its relationship between space and control variables.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Differential-Algebraische Gleichungen, Runge-Kutta Verfahren, invariante Mannigfaltigkeiten, differential algebraic equations, projected Runge-Kutta methods, invariant manifolds
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SCHROPP, Johannes, 2007. Invariant manifolds in differential algebraic equations of index 3 and in their Runge-Kutta discretizationsBibTex
@unpublished{Schropp2007Invar-551, year={2007}, title={Invariant manifolds in differential algebraic equations of index 3 and in their Runge-Kutta discretizations}, author={Schropp, Johannes} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/551"> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-sa/2.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/551/1/preprint_226.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/551/1/preprint_226.pdf"/> <dc:rights>Attribution-ShareAlike 2.0 Generic</dc:rights> <dcterms:abstract xml:lang="eng">In the present paper we analyze the geometric properties of projected Runge-Kutta methods when applied to index 3 differential algebraic equations in Hessenberg form. These methods admit the integration of index 3 DAEs without any drift effects. We show that the phase portrait is well reproduced in its relationship between space and control variables.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:01Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:01Z</dc:date> <dcterms:title>Invariant manifolds in differential algebraic equations of index 3 and in their Runge-Kutta discretizations</dcterms:title> <dcterms:issued>2007</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Schropp, Johannes</dc:creator> <dc:language>eng</dc:language> <dc:format>application/pdf</dc:format> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/551"/> <dc:contributor>Schropp, Johannes</dc:contributor> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja