Longitudinal evaluation methods in human-computer studies and visual analytics

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2007
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
eLmuse
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
InfoVis 2007 : Workshop on Metrics for the Evaluation of Visual Analytics, Sacramento, CA, 2007. 2007
Zusammenfassung

In Human-Computer studies and visual analytics, the majority of the evaluation methods applied, collect data at a single point in time, in form of cross-sectional data. In several studies numerous visualization tools were evaluated in controlled experiments. Although the experiments discovered valuable findings, certain drawbacks of the research method were expressed. The time constraints of one-time experiments reduce the amount of training which can be given to the participants.
Furthermore, when the studies tried to measure the insight derived from the visualization tools the time constraints didn't allow observing how these insights develop over time or their interdependency. Further problems of cross-sectional studies are well known, like the selection of appropriate tasks, the mostly extrinsic motivation of the participants, the influence of a laboratory environment compared to a realistic work setting and whether a visualization tool does meet the work requirements in the long run. In this position paper we argue for applying longitudinal research methods in human-computer studies as an extension to cross-sectional studies and present a first approach towards a methodological research framework. We suggest a set of research questions and performance measures that would be benefical for extending cross-sectional studies with longitudinal ones. We also describe in two case studies, in which only cross-sectional research methods were used, how they can improved by longitudinal methods.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Informationsvisualisierung, information visualization
Konferenz
InfoVis, 2007, Sacramento, CA
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690GERKEN, Jens, Peter BAK, Harald REITERER, 2007. Longitudinal evaluation methods in human-computer studies and visual analytics. InfoVis. Sacramento, CA, 2007. In: InfoVis 2007 : Workshop on Metrics for the Evaluation of Visual Analytics, Sacramento, CA, 2007. 2007
BibTex
@inproceedings{Gerken2007Longi-5504,
  year={2007},
  title={Longitudinal evaluation methods in human-computer studies and visual analytics},
  booktitle={InfoVis 2007 : Workshop on Metrics for the Evaluation of Visual Analytics, Sacramento, CA, 2007},
  author={Gerken, Jens and Bak, Peter and Reiterer, Harald}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5504">
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:04Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">In Human-Computer studies and visual analytics, the majority of the evaluation methods applied, collect data at a single point in time, in form of cross-sectional data. In several studies numerous visualization tools were evaluated in controlled experiments. Although the experiments discovered valuable findings, certain drawbacks of the research method were expressed. The time constraints of one-time experiments reduce the amount of training which can be given to the participants.&lt;br /&gt;Furthermore, when the studies tried to measure the insight derived from the visualization tools the time constraints didn't allow observing how these insights develop over time or their interdependency. Further problems of cross-sectional studies are well known, like the selection of appropriate tasks, the mostly extrinsic motivation of the participants, the influence of a laboratory environment compared to a realistic work setting and whether a visualization tool does meet the work requirements in the long run. In this position paper we argue for applying longitudinal research methods in human-computer studies as an extension to cross-sectional studies and present a first approach towards a methodological research framework. We suggest a set of research questions and performance measures that would be benefical for extending cross-sectional studies with longitudinal ones. We also describe in two case studies, in which only cross-sectional research methods were used, how they can improved by longitudinal methods.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:title>Longitudinal evaluation methods in human-computer studies and visual analytics</dcterms:title>
    <dc:contributor>Gerken, Jens</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:format>application/pdf</dc:format>
    <dc:creator>Bak, Peter</dc:creator>
    <dc:creator>Reiterer, Harald</dc:creator>
    <dc:contributor>Bak, Peter</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5504/1/Longitudinal_evaluation_methods_in_human_computer_studies_and_visual_analytics.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5504"/>
    <dc:contributor>Reiterer, Harald</dc:contributor>
    <dc:creator>Gerken, Jens</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5504/1/Longitudinal_evaluation_methods_in_human_computer_studies_and_visual_analytics.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:04Z</dc:date>
    <dcterms:issued>2007</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:bibliographicCitation>Paper also presented at: InfoVis 2007 /  Workshop on Metrics for the Evaluation of Visual Analytics, Sacramento, CA, 2007</dcterms:bibliographicCitation>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen