TS-MULE : Local Interpretable Model-Agnostic Explanations for Time Series Forecast Models
TS-MULE : Local Interpretable Model-Agnostic Explanations for Time Series Forecast Models
Date
2022
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Machine Learning and Principles and Practice of Knowledge Discovery in Databases : International Workshops of ECML PKDD 2021, Proceedings, Part I / Kamp, Michael et al. (ed.). - Cham : Springer, 2022. - (Communications in Computer and Information Science ; 1524). - pp. 5-14. - ISBN 978-3-030-93735-5
Abstract
Time series forecasting is a demanding task ranging from weather to failure forecasting with black-box models achieving state-of-the-art performances. However, understanding and debugging are not guaranteed. We propose TS-MULE, a local surrogate model explanation method specialized for time series extending the LIME approach. Our extended LIME works with various ways to segment and perturb the time series data. In our extension, we present six sampling segmentation approaches for time series to improve the quality of surrogate attributions and demonstrate their performances on three deep learning model architectures and three common multivariate time series datasets.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Machine Learning and Principles and Practice of Knowledge Discovery in Databases : International Workshops of ECML PKDD 2021, Sep 13, 2021 - Sep 17, 2021
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
SCHLEGEL, Udo, Duy Lam VO, Daniel A. KEIM, Daniel SEEBACHER, 2022. TS-MULE : Local Interpretable Model-Agnostic Explanations for Time Series Forecast Models. Machine Learning and Principles and Practice of Knowledge Discovery in Databases : International Workshops of ECML PKDD 2021, Sep 13, 2021 - Sep 17, 2021. In: KAMP, Michael, ed. and others. Machine Learning and Principles and Practice of Knowledge Discovery in Databases : International Workshops of ECML PKDD 2021, Proceedings, Part I. Cham:Springer, pp. 5-14. ISBN 978-3-030-93735-5. Available under: doi: 10.1007/978-3-030-93736-2_1BibTex
@inproceedings{Schlegel2022TSMUL-55037, year={2022}, doi={10.1007/978-3-030-93736-2_1}, title={TS-MULE : Local Interpretable Model-Agnostic Explanations for Time Series Forecast Models}, number={1524}, isbn={978-3-030-93735-5}, publisher={Springer}, address={Cham}, series={Communications in Computer and Information Science}, booktitle={Machine Learning and Principles and Practice of Knowledge Discovery in Databases : International Workshops of ECML PKDD 2021, Proceedings, Part I}, pages={5--14}, editor={Kamp, Michael}, author={Schlegel, Udo and Vo, Duy Lam and Keim, Daniel A. and Seebacher, Daniel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55037"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55037"/> <dc:creator>Vo, Duy Lam</dc:creator> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Time series forecasting is a demanding task ranging from weather to failure forecasting with black-box models achieving state-of-the-art performances. However, understanding and debugging are not guaranteed. We propose TS-MULE, a local surrogate model explanation method specialized for time series extending the LIME approach. Our extended LIME works with various ways to segment and perturb the time series data. In our extension, we present six sampling segmentation approaches for time series to improve the quality of surrogate attributions and demonstrate their performances on three deep learning model architectures and three common multivariate time series datasets.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-27T13:05:59Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2022</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Schlegel, Udo</dc:creator> <dc:contributor>Seebacher, Daniel</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55037/1/Schlegel_2-vxq3bhqko6i12.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>TS-MULE : Local Interpretable Model-Agnostic Explanations for Time Series Forecast Models</dcterms:title> <dc:contributor>Schlegel, Udo</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55037/1/Schlegel_2-vxq3bhqko6i12.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-27T13:05:59Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Seebacher, Daniel</dc:creator> <dc:contributor>Vo, Duy Lam</dc:contributor> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes