Analyzing High-Dimensional Data by Subspace Validity

Cite This

Files in this item

Checksum: MD5:94cad39177d982c23eaad159bc4670c3

AMIR, Amihood, Reuven KASHI, Nathan S. NETANYAHU, Daniel A. KEIM, Markus WAWRYNIUK, 2003. Analyzing High-Dimensional Data by Subspace Validity. Third IEEE International Conference on Data Mining. Melbourne, FL, USA. In: Third IEEE International Conference on Data Mining. IEEE Comput. Soc, pp. 473-476. ISBN 0-7695-1978-4. Available under: doi: 10.1109/ICDM.2003.1250955

@inproceedings{Amir2003Analy-5491, title={Analyzing High-Dimensional Data by Subspace Validity}, year={2003}, doi={10.1109/ICDM.2003.1250955}, isbn={0-7695-1978-4}, publisher={IEEE Comput. Soc}, booktitle={Third IEEE International Conference on Data Mining}, pages={473--476}, author={Amir, Amihood and Kashi, Reuven and Netanyahu, Nathan S. and Keim, Daniel A. and Wawryniuk, Markus} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:available rdf:datatype="">2011-03-24T15:55:49Z</dcterms:available> <dc:creator>Kashi, Reuven</dc:creator> <dc:creator>Netanyahu, Nathan S.</dc:creator> <dcterms:rights rdf:resource=""/> <dspace:isPartOfCollection rdf:resource=""/> <dc:contributor>Kashi, Reuven</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Netanyahu, Nathan S.</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Wawryniuk, Markus</dc:creator> <bibo:uri rdf:resource=""/> <dc:date rdf:datatype="">2011-03-24T15:55:49Z</dc:date> <dcterms:abstract xml:lang="eng">We are proposing a novel method that makes it possible to analyze high dimensional data with arbitrary shaped projected clusters and high noise levels. At the core of our method lies the idea of subspace validity. We map the data in a way that allows us to test the quality of subspaces using statistical tests. Experimental results, both on synthetic and real data sets, demonstrate the potential of our method.</dcterms:abstract> <dc:format>application/pdf</dc:format> <dcterms:isPartOf rdf:resource=""/> <dc:contributor>Amir, Amihood</dc:contributor> <dcterms:issued>2003</dcterms:issued> <dspace:hasBitstream rdf:resource=""/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:title>Analyzing High-Dimensional Data by Subspace Validity</dcterms:title> <dcterms:hasPart rdf:resource=""/> <dcterms:bibliographicCitation>First publ. in: Proceedings / Third IEEE International Conference on Data Mining, ICDM 2003 : 19 - 22 November 2003, Melbourne, Florida, pp. 473-476</dcterms:bibliographicCitation> <dc:creator>Amir, Amihood</dc:creator> <dc:contributor>Wawryniuk, Markus</dc:contributor> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

Analyzing_High_Dimensional_Data_by_Subspace_Validity.pdf 412

This item appears in the following Collection(s)

Attribution-NonCommercial-NoDerivs 2.0 Generic Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 2.0 Generic

Search KOPS


My Account