Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)

Spectrahedral representation of polar orbitopes

Cite This

Files in this item

Checksum: MD5:4a0d7be93dc593839567e6843f5d1f67

KOBERT, Tim, Claus SCHEIDERER, 2022. Spectrahedral representation of polar orbitopes. In: manuscripta mathematica. Springer. 169(1-2), pp. 185-208. ISSN 0025-2611. eISSN 1432-1785. Available under: doi: 10.1007/s00229-021-01337-z

@article{Kobert2022Spect-54765, title={Spectrahedral representation of polar orbitopes}, year={2022}, doi={10.1007/s00229-021-01337-z}, number={1-2}, volume={169}, issn={0025-2611}, journal={manuscripta mathematica}, pages={185--208}, author={Kobert, Tim and Scheiderer, Claus} }

Spectrahedral representation of polar orbitopes Let K be a compact Lie group and V a finite-dimensional representation of K. The orbitope of a vector x∈V is the convex hull Ox of the orbit Kx in V. We show that if V is polar then Ox is a spectrahedron, and we produce an explicit linear matrix inequality representation. We also consider the coorbitope Oox, which is the convex set polar to Ox. We prove that Oox is the convex hull of finitely many K-orbits, and we identify the cases in which Oox is itself an orbitope. In these cases one has Oox=c⋅Ox with c>0. Moreover we show that if x has “rational coefficients” then Oox is again a spectrahedron. This provides many new families of doubly spectrahedral orbitopes. All polar orbitopes that are derived from classical semisimple Lie algebras can be described in terms of conditions on singular values and Ky Fan matrix norms. Scheiderer, Claus 2022 Kobert, Tim 2021-09-01T12:54:24Z Scheiderer, Claus 2021-09-01T12:54:24Z Kobert, Tim terms-of-use eng

Downloads since Sep 1, 2021 (Information about access statistics)

Kobert_2-1r2z1qecqw47p1.pdf 22

This item appears in the following Collection(s)

Search KOPS


Browse

My Account